1) (9,-3.5)
2) (17,-1.5)
Step-by-step explanation:
1)
In order to solve this problem, we have to divide the segment into 8 equal parts, and find the point that sits at 3/8 of the whole segment.
The end points of the segment in this problem are:
![A(3,-5)](https://tex.z-dn.net/?f=A%283%2C-5%29)
and
![B(19,-1)](https://tex.z-dn.net/?f=B%2819%2C-1%29)
First of all, we find the distance between the x-coordinates and between the y-coordinates:
![d_x = |19-3|=16\\d_y=|-1-(-5)|=4](https://tex.z-dn.net/?f=d_x%20%3D%20%7C19-3%7C%3D16%5C%5Cd_y%3D%7C-1-%28-5%29%7C%3D4)
Then we divide the distances by 8 parts:
![\frac{d_x}{8}=\frac{16}{8}=2\\\frac{d_y}{8}=\frac{4}{8}=0.5](https://tex.z-dn.net/?f=%5Cfrac%7Bd_x%7D%7B8%7D%3D%5Cfrac%7B16%7D%7B8%7D%3D2%5C%5C%5Cfrac%7Bd_y%7D%7B8%7D%3D%5Cfrac%7B4%7D%7B8%7D%3D0.5)
Now we find the coordinates of point C, which sits 3/8 of the way along the segment, by using the equations:
![x_c = x_a + 3 \frac{d_x}{8}=3+3\cdot 2 =9\\y_x = y_a + 3 \frac{d_y}{8}=-5+3\cdot 0.5 =-3.5](https://tex.z-dn.net/?f=x_c%20%3D%20x_a%20%2B%203%20%5Cfrac%7Bd_x%7D%7B8%7D%3D3%2B3%5Ccdot%202%20%3D9%5C%5Cy_x%20%3D%20y_a%20%2B%203%20%5Cfrac%7Bd_y%7D%7B8%7D%3D-5%2B3%5Ccdot%200.5%20%3D-3.5)
2)
Here instead we want to find the coordinates of point C such that
(1)
The coordinates of the endpoints of the segment AB are:
![A(3,-5)](https://tex.z-dn.net/?f=A%283%2C-5%29)
and
![B(19,-1)](https://tex.z-dn.net/?f=B%2819%2C-1%29)
We call the coordinates of point C as:
![C(x_c,y_c)](https://tex.z-dn.net/?f=C%28x_c%2Cy_c%29)
To satisfy eq.(1) for the x-coordinate, we have:
![\frac{x_b-x_c}{x_c-x_a}=\frac{1}{7}](https://tex.z-dn.net/?f=%5Cfrac%7Bx_b-x_c%7D%7Bx_c-x_a%7D%3D%5Cfrac%7B1%7D%7B7%7D)
Substittuing the values of the x-coordinates of A and B we find:
![\frac{19-x_c}{x_c-3}=\frac{1}{7}\\7(19-x_c)=x_c-3\\133-7x_c=x_c-3\\8x_c=136 \rightarrow x_c = 17](https://tex.z-dn.net/?f=%5Cfrac%7B19-x_c%7D%7Bx_c-3%7D%3D%5Cfrac%7B1%7D%7B7%7D%5C%5C7%2819-x_c%29%3Dx_c-3%5C%5C133-7x_c%3Dx_c-3%5C%5C8x_c%3D136%20%5Crightarrow%20x_c%20%3D%2017)
And similarly for the y-coordinate we have:
![\frac{-1-y_c}{y_c-(-5)}=\frac{1}{7}\\7(-1-y_c)=y_c+5\\-7-7y_c=y_c+5\\8y_c=-12 \rightarrow y_c = -1.5](https://tex.z-dn.net/?f=%5Cfrac%7B-1-y_c%7D%7By_c-%28-5%29%7D%3D%5Cfrac%7B1%7D%7B7%7D%5C%5C7%28-1-y_c%29%3Dy_c%2B5%5C%5C-7-7y_c%3Dy_c%2B5%5C%5C8y_c%3D-12%20%5Crightarrow%20y_c%20%3D%20-1.5)