Answer:
Step-by-step explanation: A=p(1±r%)>t
A=3,080(1+3.64%)>12
=4730. 200
Step-by-step explanation:
SinA=1/3=p/h
p=1,h=3,and b=?
Using Pythagoras Theorem,
b=√3^2-1^2
b=√9-1
b=√8=2√2
Now,
CosA=b/h=2√2/3
TanA=p/b=1/2√2
There is no phi in my keypad so I use A angle instead of phi.Adjust it.
Drifting through the wind, wanting to start again PSHWIWIEI
Answer/Step-by-step explanation:
Question 1:
Interior angles of quadrilateral ABCD are given as: m<ABC = 4x, m<BCD = 3x, m<CDA = 2x, m<DAB = 3x.
Since sum of the interior angles = (n - 2)180, therefore:

n = 4, i.e. number of sides/interior angles.
Equation for finding x would be:



(dividing each side by 12)

Find the measures of the 4 interior angles by substituting the value of x = 30:
m<ABC = 4x
m<ABC = 4*30 = 120°
m<BCD = 3x
m<BCD = 3*30 = 90°
m<CDA = 2x
m<CDA = 2*30 = 60°
m<DAB = 3x
m<DAB = 3*30 = 90°
Question 2:
<CDA and <ADE are supplementary (angles on a straight line).
The sum of m<CDA and m<ADE equal 180°. To find m<ADE, subtract m<CDA from 180°.
m<ADE = 180° - m<CDA
m<ADE = 180° - 60° = 120°
Given a solution

, we can attempt to find a solution of the form

. We have derivatives



Substituting into the ODE, we get


Setting

, we end up with the linear ODE

Multiplying both sides by

, we have

and noting that
![\dfrac{\mathrm d}{\mathrm dx}\left[x(\ln x)^2\right]=(\ln x)^2+\dfrac{2x\ln x}x=(\ln x)^2+2\ln x](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5Bx%28%5Cln%20x%29%5E2%5Cright%5D%3D%28%5Cln%20x%29%5E2%2B%5Cdfrac%7B2x%5Cln%20x%7Dx%3D%28%5Cln%20x%29%5E2%2B2%5Cln%20x)
we can write the ODE as
![\dfrac{\mathrm d}{\mathrm dx}\left[wx(\ln x)^2\right]=0](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Cleft%5Bwx%28%5Cln%20x%29%5E2%5Cright%5D%3D0)
Integrating both sides with respect to

, we get


Now solve for

:


So you have

and given that

, the second term in

is already taken into account in the solution set, which means that

, i.e. any constant solution is in the solution set.