When you keep raisin in water and the raisin gets puffed.
Movement of salt-water in animal cell across our cell membrane.
Answer:
c.an extinct oceanic hot-spot volcano that has subsided below sea level
Explanation:
- Marine geology defines a guyot as an isolated underwater volcanic mountain with a flat top more than 200m below the surface of the sea.
-The flat top is due to years of wave erosion.
-Guyots can form a chain of seamounts as the ocean plate of the Earth's crust moves slowly over a hot spot that remains stationary beneath the plate.
Answer:
Explanation:
Part A) Using
light intensity I= P/A
A= Area= π (Radius)^2= π((0.67*10^-6m)/(2))^2= 1.12*10^-13 m^2
Radius= Diameter/2
P= power= 10*10^-3=0.01 W
light intensity I= 0.01/(1.12*10^-13)= 9*10^10 W/m^2
Part B) Using
I=c*ε*E^2/2
rearrange to solve for E=
((I*2)/(c*ε))
c is the speed of light which is 3*10^8 m/s^2
ε=permittivity of free space or dielectric constant= 8.85* 10^-12 F⋅m−1
I= the already solved light intensity= 8.85*10^10 W/m^2
amplitude of the electric field E=
(9*10^10 W/m^2)*(2) / (3*10^8 m/s^2)*(8.85* 10^-12 F⋅m−1)
---> E=
(1.8*10^11) / (2.66*10^-3) =
(6.8*10^13) = 8.25*10^6 V/m
Answer: W =
J
Explanation: Since the potassium ion is at the outside membrane of a cell and the potential here is lower than the potential inside the cell, the transport will need work to happen.
The work to transport an ion from a lower potential side to a higher potential side is calculated by

q is charge;
ΔV is the potential difference;
Potassium ion has +1 charge, which means:
p =
C
To determine work in joules, potential has to be in Volts, so:

Then, work is


To move a potassium ion from the exterior to the interior of the cell, it is required
J of energy.