Answer:
The measure of the vertex angle is 94 degrees ⇒ A
Step-by-step explanation:
- In any triangle, the sum of the measures of its interior angle is 180°
- In the isosceles triangle, the two base angles are equal in measures
∵ In an isosceles triangle, the measure of the base angle = (2x + 5)
∵ The base angles of the isosceles triangles are equal in measures
∴ The measures of the base angles are (2x + 5), (2x + 5)
∵ The measure of the vertex angle = (5x - 1)
∵ The sum of the measure of the three angles = 180°
∴ (2x + 5) + (2x + 5) + (5x - 1) = 180
→ Add the like terms in the left side
∵ (2x + 2x + 5x) + (5 + 5 + -1) = 180
∴ 9x + 9 = 180
→ Subtract 9 from both sides
∴ 9x + 9 - 9 = 180 - 9
∴ 9x = 171
→ Divide both sides by 9 to find x
∴ x = 19
→ Substitute the value of x in the measure of the vertex angle to find it
∵ The measure of the vertex angle = 5x - 1
∴ The measure of the vertex angle = 5(19) - 1
∴ The measure of the vertex angle = 95 - 1
∴ The measure of the vertex angle = 94°
∴ The measure of the vertex angle is 94 degrees
35 students would not know any of the three languages, because if 30 know French, 19 knew German, and 16 knew Russian, that must mean that 65 students know at least one of the three languages. So you subtract 65 from 100 and end up with 35
Answer:
There is no image or context
Step-by-step explanation:
Sorry, message me back. I am sure I can asnwer your question.
Answer:
1 / 3^5
1/ 243
Step-by-step explanation:
3^4 ÷ 3^9
We know that a^b ÷ a^c = a^ ( b-c)
3 ^ ( 4-9)
3^ -5
We can rewrite this as a^-b = 1/ a^b
1 / 3^5
We know that 3^5 = 243
1/ 243
Answer: The required derivative is 
Step-by-step explanation:
Since we have given that
![y=\ln[x(2x+3)^2]](https://tex.z-dn.net/?f=y%3D%5Cln%5Bx%282x%2B3%29%5E2%5D)
Differentiating log function w.r.t. x, we get that
![\dfrac{dy}{dx}=\dfrac{1}{[x(2x+3)^2]}\times [x'(2x+3)^2+(2x+3)^2'x]\\\\\dfrac{dy}{dx}=\dfrac{1}{[x(2x+3)^2]}\times [(2x+3)^2+2x(2x+3)]\\\\\dfrac{dy}{dx}=\dfrac{4x^2+9+12x+4x^2+6x}{x(2x+3)^2}\\\\\dfrac{dy}{dx}=\dfrac{8x^2+18x+9}{x(2x+3)^2}](https://tex.z-dn.net/?f=%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Bx%282x%2B3%29%5E2%5D%7D%5Ctimes%20%5Bx%27%282x%2B3%29%5E2%2B%282x%2B3%29%5E2%27x%5D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B1%7D%7B%5Bx%282x%2B3%29%5E2%5D%7D%5Ctimes%20%5B%282x%2B3%29%5E2%2B2x%282x%2B3%29%5D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B4x%5E2%2B9%2B12x%2B4x%5E2%2B6x%7D%7Bx%282x%2B3%29%5E2%7D%5C%5C%5C%5C%5Cdfrac%7Bdy%7D%7Bdx%7D%3D%5Cdfrac%7B8x%5E2%2B18x%2B9%7D%7Bx%282x%2B3%29%5E2%7D)
Hence, the required derivative is 