If we evaluate the function at infinity, we can immediately see that:

Therefore, we must perform an algebraic manipulation in order to get rid of the indeterminacy.
We can solve this limit in two ways.
<h3>Way 1:</h3>
By comparison of infinities:
We first expand the binomial squared, so we get

Note that in the numerator we get x⁴ while in the denominator we get x³ as the highest degree terms. Therefore, the degree of the numerator is greater and the limit will be \infty. Recall that when the degree of the numerator is greater, then the limit is \infty if the terms of greater degree have the same sign.
<h3>Way 2</h3>
Dividing numerator and denominator by the term of highest degree:



Note that, in general, 1/0 is an indeterminate form. However, we are computing a limit when x →∞, and both the numerator and denominator are positive as x grows, so we can conclude that the limit will be ∞.
SOLUTION
Given the question in the image, the following are the solution steps to answer the question.
STEP 1: Write the given set of values

STEP 2: Write the formula for calculating the Standard deviation of a set of numbers
![\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ where\text{ }x_i\text{ are data points,} \\ \bar{x}\text{ is the mean} \\ \text{n is the number of values in the data set} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S%5Ctan%20dard%5Ctext%7B%20deviation%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B%5Csum%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D%20%5C%5C%20where%5Ctext%7B%20%7Dx_i%5Ctext%7B%20are%20data%20points%2C%7D%20%5C%5C%20%5Cbar%7Bx%7D%5Ctext%7B%20is%20the%20mean%7D%20%5C%5C%20%5Ctext%7Bn%20is%20the%20number%20of%20values%20in%20the%20data%20set%7D%20%5Cend%7Bgathered%7D)
STEP 3: Calculate the mean

STEP 4: Calculate the Standard deviation
![\begin{gathered} S\tan dard\text{ deviation=}\sqrt[]{\frac{\sum^{}_{}(x_i-\bar{x})^2}{n-1}} \\ \sum ^{}_{}(x_i-\bar{x})^2\Rightarrow\text{Sum of squares of differences} \\ \Rightarrow10332.7225+657.9225+18591.3225+982.8225+2740.52251+9731.8225+3522.4225+18319.6225+2878.3225 \\ +8163.1225+1417.5225+3925.0225+1321.3225+386.1225+5677.6225+2953.9225+3800.7225 \\ +3209.2225+2565.4225+10537.0225 \\ \text{Sum}\Rightarrow108974.0275 \\ \\ S\tan dard\text{ deviation}=\sqrt[]{\frac{111714.55}{20-1}}=\sqrt[]{\frac{111714.55}{19}} \\ \Rightarrow\sqrt[]{5879.713158}=76.67928767 \\ \\ S\tan dard\text{ deviation}\approx76.68 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20S%5Ctan%20dard%5Ctext%7B%20deviation%3D%7D%5Csqrt%5B%5D%7B%5Cfrac%7B%5Csum%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%7D%7Bn-1%7D%7D%20%5C%5C%20%5Csum%20%5E%7B%7D_%7B%7D%28x_i-%5Cbar%7Bx%7D%29%5E2%5CRightarrow%5Ctext%7BSum%20of%20squares%20of%20differences%7D%20%5C%5C%20%5CRightarrow10332.7225%2B657.9225%2B18591.3225%2B982.8225%2B2740.52251%2B9731.8225%2B3522.4225%2B18319.6225%2B2878.3225%20%5C%5C%20%2B8163.1225%2B1417.5225%2B3925.0225%2B1321.3225%2B386.1225%2B5677.6225%2B2953.9225%2B3800.7225%20%5C%5C%20%2B3209.2225%2B2565.4225%2B10537.0225%20%5C%5C%20%5Ctext%7BSum%7D%5CRightarrow108974.0275%20%5C%5C%20%20%5C%5C%20S%5Ctan%20dard%5Ctext%7B%20deviation%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B111714.55%7D%7B20-1%7D%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B111714.55%7D%7B19%7D%7D%20%5C%5C%20%5CRightarrow%5Csqrt%5B%5D%7B5879.713158%7D%3D76.67928767%20%5C%5C%20%20%5C%5C%20S%5Ctan%20dard%5Ctext%7B%20deviation%7D%5Capprox76.68%20%5Cend%7Bgathered%7D)
Hence, the standard deviation of the given set of numbers is approximately 76.68 to 2 decimal places.
STEP 5: Calculate the First and third quartile

STEP 6: Find the Interquartile Range

Hence, the interquartile range of the data is 116
Answer:
The triangular prism is a better deal because you get 204 in³ for the same price you would pay for 128 in³ with a trapezoidal prism.
Step-by-step explanation:
The trapezoidal prism has volume 32*4=128 cubic inches. The triangular prism has volume 34*6=204 inches. Since the triangular prism is more voluminous, it is the better deal. Hope this helps!
9514 1404 393
Answer:
Step-by-step explanation:
These "special" right triangles have side length ratios that it is useful to remember.
<u>45°-45°-90° triangle</u>
Sides have the ratios 1 : 1 : √2. That is, x is √2 times as long as the side length shown as 18.
x = 18√2
<u>30°-60°-90° triangle</u>
Shortest to longest, sides have the ratios ...
1 : √3 : 2
That is, y is √3 times the length of the side marked 18, and z is 2 times the length of the side marked 18.
y = 18√3
z = 2·18 = 36
Answer:
w > -2
Step-by-step explanation:
9 + w > 7
Subtract 9 from both sides to end up with w alone on the left side.
w > -2