The free electrons available and the electrons participating in making the bond
The ionizatin energy is the is the energy required to remove one electron from from a gaseous atom.
There is a clear trend for the first ionization energies (the ionization energy to remove the first electron) of the atoms.
Inside a group (a column of the periodic table) the ionization energy increases downwards .
Then, the element that has the greatest atomic number in the group has the highest ionization energy (it is more difficult to form its ion).
As per this trend, in the group 4A lead, Pb (atomic number 82) is the natural element with the highest ionization energy. But there is one artificial element in this group, whose atomic number is 114. It is called Flerovium and as per the rule it shall have a higher ionization energy.
Voltage difference is the push that causes charges to flow from high to low areas.
Displaced volume:
final volume - initial volume
1 mL = 1 cm³
38.5 mL - 35.0 mL = 3.5 cm³
hope this helps!
<u>Answer:</u> The
for the reaction is 51.8 kJ.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The chemical equation for the reaction of carbon and water follows:

The intermediate balanced chemical reaction are:
(1)
( × 2)
(2)
( × 2)
(3)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[2\times \Delta H_1]+[2\times \Delta H_2]+[1\times (-\Delta H_3)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B2%5Ctimes%20%5CDelta%20H_1%5D%2B%5B2%5Ctimes%20%5CDelta%20H_2%5D%2B%5B1%5Ctimes%20%28-%5CDelta%20H_3%29%5D)
Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(2\times (-393.7))+(2\times (-285.9))+(1\times -(-1411))]=51.8kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-393.7%29%29%2B%282%5Ctimes%20%28-285.9%29%29%2B%281%5Ctimes%20-%28-1411%29%29%5D%3D51.8kJ)
Hence, the
for the reaction is 51.8 kJ.