10.4375
12.875×2=25.75 46.625-25.75=20.875 20.875÷2=10.4375
Let P be Brandon's starting point and Q be the point directly across the river from P.
<span>Now let R be the point where Brandon swims to on the opposite shore, and let </span>
<span>QR = x. Then he will swim a distance of sqrt(50^2 + x^2) meters and then run </span>
<span>a distance of (300 - x) meters. Since time = distance/speed, the time of travel T is </span>
<span>T = (1/2)*sqrt(2500 + x^2) + (1/6)*(300 - x). Now differentiate with respect to x: </span>
<span>dT/dx = (1/4)*(2500 + x^2)^(-1/2) *(2x) - (1/6). Now to find the critical points set </span>
<span>dT/dx = 0, which will be the case when </span>
<span>(x/2) / sqrt(2500 + x^2) = 1/6 ----> </span>
<span>3x = sqrt(2500 + x^2) ----> </span>
<span>9x^2 = 2500 + x^2 ----> 8x^2 = 2500 ---> x^2 = 625/2 ---> x = (25/2)*sqrt(2) m, </span>
<span>which is about 17.7 m downstream from Q. </span>
<span>Now d/dx(dT/dx) = 1250/(2500 + x^2) > 0 for x = 17.7, so by the second derivative </span>
<span>test the time of travel, T, is minimized at x = (25/2)*sqrt(2) m. So to find the </span>
<span>minimum travel time just plug this value of x into to equation for T: </span>
<span>T(x) = (1/2)*sqrt(2500 + x^2) + (1/6)*(300 - x) ----> </span>
<span>T((25/2)*sqrt(2)) = (1/2)*(sqrt(2500 + (625/2)) + (1/6)*(300 - (25/2)*sqrt(2)) = 73.57 s.</span><span>
</span><span>
</span><span>
</span><span>
</span><span>mind blown</span>
Answer:
The three most important are to bear the load of the building, anchor it against natural forces such as earthquakes, and to isolate it from ground moisture. The relative importance of these functions changes with the type of land underneath the building and the building design
Answer:
7/12 < 3/5
Step-by-step explanation:
7/12 = 0.583
3/5 = 0.6
< smaller than
> greatet than
= equals to
Which number(s) from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, if any, will solve this equation?
Sedbober [7]
The answer is D.
If you choose any one of the numbers, the equation will be true.