Answer:
The width of the sandbox is
.
Step-by-step explanation:
Given,
Area of the sandbox = ![10\frac{2}{3}=\frac{32}{3}\ ft^2](https://tex.z-dn.net/?f=10%5Cfrac%7B2%7D%7B3%7D%3D%5Cfrac%7B32%7D%7B3%7D%5C%20ft%5E2)
Length = ![\frac{1}{4}\ ft](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D%5C%20ft)
Solution,
Let the width of the sandbox be 'w'.
Since the sandbox is in shape of rectangle.
So we use the formula of area of rectangle.
![Area = Length\times Width](https://tex.z-dn.net/?f=Area%20%3D%20Length%5Ctimes%20Width)
On substituting the given values, we get;
![\frac{1}{4}\times w=\frac{32}{3}\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20w%3D%5Cfrac%7B32%7D%7B3%7D%5C%5C)
By cross multiplication method, we get;
![w=\frac{32\times4}{3\times 1} =\frac{128}{3} =42\frac{2}{3} \ ft](https://tex.z-dn.net/?f=w%3D%5Cfrac%7B32%5Ctimes4%7D%7B3%5Ctimes%201%7D%20%3D%5Cfrac%7B128%7D%7B3%7D%20%3D42%5Cfrac%7B2%7D%7B3%7D%20%5C%20ft)
Hence The width of the sandbox is
.