Let's try to simplify x^2 + 16. It's a sum of two squares:
x^2 + 16 = 0
x^2 = -16
The problem is, we can't take a square root of a negative. This is where imaginary numbers come in.
Remember that square roots have a plus or minus symbol outside:
±√-16 = ±4i
Our two roots are 4i and -4i. Therefore, the trinomial simplifies to:
(x + 4i)(x - 4i)
If we attempt to divide x + 4 by these two binomials, we will find that 4 and 4i are not like terms. Therefore, we can't simplify this expression.
<h3>Answer: C) none of the equations are identities</h3>
If you plugged theta = 0 into the first equation, then you would have
sin(45) + cos(45) = sin(0) + cos(0)
sqrt(2) = 1
which is a false equation. We don't have an identity here.
The same story happens with the second equation. Plug in theta = 0 and it becomes
cos(60) - sin(60) = cos^2(0) + tan(0)
1/2 - sqrt(3)/2 = 1 + 0
-0.37 = 1
which is false.
Answer: 120 divided by 4 = 30
Step-by-step explanation:
Answer: third one
Step-by-step explanation:
Answer:
Simplified= −x+9
Step-by-step explanation: