The answer is <span>2(–4y + 13) – 3y = –29
Step 1: Express </span><span>x from the second equation
Step 2: Substitute x into the first equation:
The system of equations is:
</span><span>2x – 3y = –29
x + 4y = 13
Step 1:
</span>The second equation is: x + 4y = 13
Rearrange it to get x: x = - 4y + 13
Step 2:
The first equation is: 2x – 3y = –29
The second equation is: x = - 4y + 13
Substitute x from the second equation into the first one:
2(-4y + 13) - 3y = -29
Therefore, the second choice is correct.
R - 4.5 < 11
—
r would be 15.5
[ r = 15.5 ]
Since f(g(x)) = g(f(x)) = x, hence the function f(x) and g(x) are inverses of each other.
<h3>Inverse of functions</h3>
In order to determine if the function f(x) and g(x) are inverses of each other, the composite function f(g(x)) = g(f(x))
Given the function
f(x)= 5-3x/2 and
g(x)= 5-2x/3
f(g(x)) = f(5-2x/3)
Substitute
f(g(x)) = 5-3(5-2x)/3)/2
f(g(x)) = (5-5+2x)/2
f(g(x)) = 2x/2
f(g(x)) = x
Similarly
g(f(x)) = 5-2(5-3x/2)/3
g(f(x)) = 5-5+3x/3
g(f(x)) = 3x/3
g(f(x)) =x
Since f(g(x)) = g(f(x)) = x, hence the function f(x) and g(x) are inverses of each other.
Learn more on inverse of a function here: brainly.com/question/19859934
#SPJ1
Answer with Step-by-step explanation:
We are given that an equation of curve

We have to find the equation of tangent line to the given curve at point 
By using implicit differentiation, differentiate w.r.t x
Using formula :



Substitute the value x=
Then, we get


Slope of tangent=m=
Equation of tangent line with slope m and passing through the point
is given by

Substitute the values then we get
The equation of tangent line is given by




This is required equation of tangent line to the given curve at given point.