Answer:
Explanation:
1.) If {an} > 0 for all n and limit approaches n of an = L, then L > 0 ALWAYS TRUE
2.) If {an} is bounded, then it converges
can be FALSE ; a_n = (-1)^n does not converge
3.) If {an} is decreasing, then it converges
can be FALSE ; a_n = -n does not converge
4.) If {an} is decreasing and {an} > 0 for all n, then it converges
TRUE
5.) If {an} is bounded, then {an/n} converges to 0
TRUE
6.) If [an} converges and {bn} converges then {an/bn} converges
can be FALSE; a_n = 1/n and b_n = (-1)^n/n
Both converge to 0 but a_n/b_n = (-1)^n which does not converge