9: the answer is 4 to 13
10: the answer is 6 to 13
If the radius is tripped, the volume will increase by 3^3 = 27 times.
Answer: 27 times
Answer:

Step-by-step explanation:
We will use slope-intercept form of equation to write our equation. The equation of a line in slope-intercept form is:
, where m= Slope of the line, b= y-intercept.
To write the equation that represents the number of credits y on the cards after x games, we will find slope of our line.
We have been given that after playing 5 games we have 33 credits left. We play 4 more games and we have 21 credits left. So our points will be (5,33) and (9,21).
Let us substitute coordinates of our both given points in slope formula:
,

Now let us substitute m=-3 and coordinates of point (5,33) in slope intercept form of equation to find y-intercept.
Upon substituting m=-3 and b=48 in slope-intercept form of an equation we will get,

Therefore, our desired equation will be
.
Given:
A(-5,4)
B(3,4)
C(3,-5)
So point D is:
so point D is (-5,-5)
For AB is
Distance between two point is:
![\begin{gathered} (x_1,y_1)and(x_2,y_2) \\ D=\sqrt[]{(x_2-x_1)^2+(y_2-y_1)^2} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%28x_1%2Cy_1%29and%28x_2%2Cy_2%29%20%5C%5C%20D%3D%5Csqrt%5B%5D%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D%20%5Cend%7Bgathered%7D)
so distance between A(-5,4) and B(3,4) is:
![\begin{gathered} D=\sqrt[]{(3-(-5))^2+(4-4)^2} \\ =\sqrt[]{(8)^2+0^2} \\ =8 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%283-%28-5%29%29%5E2%2B%284-4%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%288%29%5E2%2B0%5E2%7D%20%5C%5C%20%3D8%20%5Cend%7Bgathered%7D)
So AB is 8 unit apart.
For B(3,4) and C(3,-5).
![\begin{gathered} D=\sqrt[]{(3-3)^2+(-5-4)^2} \\ =\sqrt[]{0^2+(-9)^2} \\ =9 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%283-3%29%5E2%2B%28-5-4%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B0%5E2%2B%28-9%29%5E2%7D%20%5C%5C%20%3D9%20%5Cend%7Bgathered%7D)
So BC is 9 unit apart.
For fourth bush point is (-5,-5) it left of point C(3,-5) is:
![\begin{gathered} D=\sqrt[]{(3-(-5))^2+(-5-(-5))^2} \\ =\sqrt[]{(8)^2+0^2} \\ =8 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%283-%28-5%29%29%5E2%2B%28-5-%28-5%29%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B%288%29%5E2%2B0%5E2%7D%20%5C%5C%20%3D8%20%5Cend%7Bgathered%7D)
so fourth bush is 8 unit left of C.
For fourth bush(-5,-5) below to point A(-5,4)
![\begin{gathered} D=\sqrt[]{(-5-(-5))^2+(4-(-5))^2} \\ =\sqrt[]{0^2+9^2} \\ =9 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20D%3D%5Csqrt%5B%5D%7B%28-5-%28-5%29%29%5E2%2B%284-%28-5%29%29%5E2%7D%20%5C%5C%20%3D%5Csqrt%5B%5D%7B0%5E2%2B9%5E2%7D%20%5C%5C%20%3D9%20%5Cend%7Bgathered%7D)
so fourth bush 9 units below of A.