2.57+4.35=6.92
Tyrone spent $6.92 on paint
Consider the following functions. f={(−4,−1),(1,1),(−3,−2),(−5,2)} and g={(1,1),(2,−3),(3,−1)}: Find (f−g)(1).
fenix001 [56]
Answer:
0
Step-by-step explanation:
Subtraction of functions has the property:
f={(−4,−1),(1,1),(−3,−2),(−5,2)} has (1,1) means that f maps 1 to 1, therefore f(1) = 1
g={(1,1),(2,−3),(3,−1)} has (1,1), means that g maps 1 to 1, therefore g(1)=1
As a Result, since (f−g)(1) = f(1) - g(1), we have (f−g)(1) = 1-1=0
Answer:
3 miles
Step-by-step explanation:
Slope is simply the change in position per unit rate. We could conclude that the steepness of the Applachian is the rate of change in position per unit time. Since the distance hiked on the Applachian is said to be 3 miles per hour, then we can conclude that the slope of the applachian is 3 miles
This is the change in miles / change in time.
Chang in miles = 3
Change in time = 1
Slope = 3/1
Slope = 3
Answer:
10
Step-by-step explanation:
19 divided by 19 is equal to 1 so you cross out 19 and are left with "b".
190 divided by 19 is equal to 10.
b=10
We performed the following operations:
![f(x)=\sqrt[3]{x}\mapsto g(x)=2\sqrt[3]{x}=2f(x)](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20g%28x%29%3D2%5Csqrt%5B3%5D%7Bx%7D%3D2f%28x%29)
If you multiply the parent function by a constant, you get a vertical stretch if the constant is greater than 1, a vertical compression if the constant is between 0 and 1. In this case the constant is 2, so we have a vertical stretch.
![g(x)=2\sqrt[3]{x}\mapsto h(x)=-2\sqrt[3]{x}=-g(x)](https://tex.z-dn.net/?f=g%28x%29%3D2%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20h%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D%3D-g%28x%29)
If you change the sign of a function, you reflect its graph across the x axis.
![h(x)=-2\sqrt[3]{x}\mapsto m(x)=-2\sqrt[3]{x}-1=h(x)-1](https://tex.z-dn.net/?f=h%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20m%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D-1%3Dh%28x%29-1)
If you add a constant to a function, you translate its graph vertically. If the constant is positive, you translate upwards, otherwise you translate downwards. In this case, the constant is -1, so you translate 1 unit down.