1/3 of 120 is 40
1/4 of 120 is 30
therefore, 10 more scouts in the first group elected to go on the trip
Answer:
(9x²)²
Step-by-step explanation:
Given the expression 81x⁴, to write the expression as a square of a monomial, first we will assign a variable to the expression.
y = 81x⁴
Then we take the square root of both sides of the expression
√y = √81x⁴
y^½ = √81 × √x⁴
y^½ = 9x²
Squaring both sides of the resulting equation to get y back
(y^½)² = (9x²)²
y = (9x²)²
The expression as a square of a monomial is (9x²)²
<span>1/8 + 2(1/2m + 5) = 1/4m + 7 would equal m=-25/6</span>
4.5 / 2 = 2.25cm radius for the smaller circle
3.14 (pi) × 2.25² = 15.89625cm²
10.5 / 2 = 5.25cm radius for the larger circle
3.14 × 5.25² = 86.54625cm²
86.54625 - 15.89625 = <span>70.65cm</span>²
The answer is 70.7cm².
Answer:

Step-by-step explanation:
The opposite angles in a quadrilateral theorem states that when a quadrilateral is inscribed in a circle, the angles that are opposite each other are supplementary, their degree measures add up to 180 degrees. One can apply this here by using the sum of (<C) and (<A) to find the measure of the parameter (z). Then one can substitute in the value of (z) to find the measure of (<B). Finally, one can use the opposite angles in a quadrilateral theorem to find the measure of angle (<D) by using the sum of (<B) and (D).
Use the opposite angles in an inscribed quadrialteral theorem,
<A + <C = 180
Substitute,
14x - 7 + 8z = 180
Simplify,
22z - 7 = 180
Inverse operations,
22z = 187
z = 
Simplify,
z = 
Now substitute the value of (z) into the expression given for the measure of angle (<B)
<B = 10z
<B = 10(
)
Simplify,
<B = 85
Use the opposite angles in an inscribed quadrilateral theorem to find the measure of (<D)
<B + <D = 180
Substitute,
85 + <D = 180
Inverse operations,
<D = 95