For this case, what we must do is fill squares in all the expressions until we find the correct result.
We have then:
x2 + y2 − 4x + 12y − 20 = 0 x2 + y2 − 4x + 12y = 20
x2 − 4x + y2 + 12y = 20
x2 − 4x + (12/2)^2 + y2 + 12y + (-4/2)^2 = 20 + (12/2)^2 + (-4/2)^2
x2 − 4x + (6)^2 + y2 + 12y + (-2)^2 = 20 + (6)^2 + (-2)^2
x2 − 4x + 36 + y2 + 12y + 4 = 20 + 36 + 4
(x − 2)2 + (y + 6)2 = 60
3x2 + 3y2 + 12x + 18y − 15 = 0
x2 + y2 + 4x + 6y − 5 = 0
x2 + y2 + 4x + 6y = 5
x2 + 4x + (4/2)^2 + y2 + 6y + (6/2)^2 = 5 + (4/2)^2 + (6/2)^2
x2 + 4x + (2)^2 + y2 + 6y + (3)^2 = 5 + (2)^2 + (3)^2
x2 + 4x + 4 + y2 + 6y + 9 = 5 + 4 + 9
(x + 2)2 + (y + 3)2 = 18
2x2 + 2y2 − 24x − 16y − 8 = 0
x2 + y2 − 12x − 8y − 4 = 0
x2 + y2 − 12x − 8y = 4
x2 − 12x + (-12/2)^2 + y2 − 8y + (-8/2)^2 = 4 + (-12/2)^2 + (-8/2)^2
x2 − 12x + (-6)^2 + y2 − 8y + (-4)^2 = 4 + (-6)^2 + (-4)^2
x2 − 12x + 36 + y2 − 8y + 16 = 4 + 36 + 16
(x − 6)2 + (y − 4)2 = 56
x2 + y2 + 2x − 12y − 9 = 0
x2 + y2 + 2x - 12y = 9
x2 + 2x + y2 - 12y = 9
x2 + 2x + (2/2)^2 + y2 - 12y + (-12/2)^2 = 9 + (2/2)^2 + (-12/2)^2
x2 + 2x + (1)^2 + y2 - 12y + (-6)^2 = 9 + (1)^2 + (-6)^2
x2 + 2x + 1 + y2 - 12y + 36 = 9 + 1 + 36
(x + 1)2 + (y − 6)2 = 46
R/s^5t^r2st-2/r^3
hope this helps
Answer:
72
Step-by-step explanation:
C = pi* d
pi= 3 (given in the problem)
d=24(the diameter is given in the picture)
C= 3*24 = 72
Answer:
(6,3)
Step-by-step explanation:
y=2/3 x - 1
y=-1/2 x + 6
Since both equations are equal to y, we can set them equal
2/3 x - 1 =-1/2 x + 6
We have fractions, so I will multiply by 6 to clear the fractions
6(2/3 x - 1) =(-1/2 x + 6)6
Distribute
4x -6 = -3x +36
Add 3x to each side
4x+3x -6 = -3x+3x +36
7x -6 = 36
Add 6 to each side
7x-6+6 = 36+6
7x = 42
Divide each side by 7
7x/7 = 42/7
x =6
Now we need to find y
y =2/3x -1
y = 2/3(6) -1
y = 4-1
y=3
(6,3)
2x+1=13 x=6 so an ok answer would be: 2x+10=40 x=15