=sqrt((x2-x1)^2+(y2-y1)^2)=sqrt((15-14)^2+(8-4)^2)=sqrt(1+16)=sqrt(17)=4.123105625617661=4.1231
Answer:
First one, Second one, and fourth one
Step-by-step explanation:
Answer:
og angle: 126.8
complementary angle: 53.2
og angle mirror (if any): 126.8
complementary angle mirror (if any): 53.2
Answer:

Step-by-step explanation:
The formula for the length of a vector/line in your case.
![L = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} = \sqrt{[4 - (-1)]^2 + [2 -(-3)]^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}](https://tex.z-dn.net/?f=L%20%3D%20%5Csqrt%7B%28x_2-x_1%29%5E2%20%2B%20%28y_2-y_1%29%5E2%7D%20%3D%20%5Csqrt%7B%5B4%20-%20%28-1%29%5D%5E2%20%2B%20%5B2%20-%28-3%29%5D%5E2%7D%20%3D%20%5Csqrt%7B5%5E2%20%2B%205%5E2%7D%20%3D%20%5Csqrt%7B50%7D%20%3D%205%5Csqrt%7B2%7D)
Answer: The answer B
Step-by-step explanation: so the answer i got was x 5 so its B