1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
solmaris [256]
3 years ago
6

Find the equation of the line with slope m= -2 that contains the point (-8,18)

Mathematics
1 answer:
slava [35]3 years ago
5 0

For slope-intercept form it's y=-2x+2  and for point-slope form the answer is y-18=-2(x-(-8)) or y-18=-2(x+8).

You might be interested in
(35 points) answer 5 and 7 only please
tatyana61 [14]
A2+b2=c2 and get your answer

3 0
3 years ago
Solve 3-(2x-5)<-4(x+2)
azamat

Answer:

Step-by-step explanation:

3-(2x-5)=-4(x+2)

We simplify the equation to the form, which is simple to understand

3-(2x-5)=-4(x+2)

Remove unnecessary parentheses

3-2x+5=-4*(x+2)

Reorder the terms in parentheses

3-2x+5=+(-4x-8)

Remove unnecessary parentheses

+3-2x+5=-4x-8

We move all terms containing x to the left and all other terms to the right.

-2x+4x=-8-3-5

We simplify left and right side of the equation.

+2x=-16

We divide both sides of the equation by 2 to get x.

x=-8

7 0
3 years ago
Read 2 more answers
Estimate each product 5/7×1/9=
Cerrena [4.2K]
Multiply it out to get 5/7*1/9=5/63.  This is an exact value of the product.
8 0
3 years ago
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
According to a survey by the National Center for Health Statistics, the heights of adult men in the U.S. are normally distribute
fiasKO [112]

Answer:

0.0151 is the probability  that adult men are at most 59 inches or at least 74 inches.  

Step-by-step explanation:

We are given the following information in the question:

Mean, μ = 68 inches

Standard Deviation, σ = 2.75 inches

We are given that the distribution of heights of adult men is a bell shaped distribution that is a normal distribution.

Formula:

z_{score} = \displaystyle\frac{x-\mu}{\sigma}

P(height between 59 and 74)

P(59 \leq x \leq 74) = P(\displaystyle\frac{59 - 68}{2.75} \leq z \leq \displaystyle\frac{74-68}{2.75}) = P(-3.2727 \leq z \leq 2.1818)\\\\= P(z \leq 2.1818) - P(z < -3.2727)\\= 0.9854 - 0.0005=98.49\%

P(x\leq59 \cup x\geq 74)=1 - P(59\leq x \leq 74) \\=1 - 0.9849\\=0.0151\\=1.51\%

0.0151 is the probability  that adult men are at most 59 inches or at least 74 inches.

8 0
3 years ago
Other questions:
  • What two pencils do i need to move to make three triangles?
    9·1 answer
  • State the slope and the y intercept: y=4x +1
    8·2 answers
  • If the segment OP is dilated by a scale factor r=2, what is the length of segment OP?
    13·1 answer
  • Answer to (3x^3y)(4xy^2)?
    12·1 answer
  • Which set of ordered pairs represents y as a function of x?
    12·1 answer
  • Perform the operation. (3x^2+4)-(-5x^2+4x-1)
    11·1 answer
  • What table represents g(x) = -2•f when f(x) = x + 4
    13·2 answers
  • CAN SOMEONE HELP ME WITH 12 MATH QUESTIONS THROUGH IG?
    7·1 answer
  • Mang Nathaniel is selling two kinds of vinegar. Silver duck is priced at Php
    7·1 answer
  • Aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!