Answer: 188+22x=518 (c)
Step-by-step explanation:
Answer:
x - 5
Step-by-step explanation:
Answer:
Heyyyy!!
The answer is 66.9
please read the explanation... it will help... I promise
Step-by-step explanation:
Okay... Here we go...
The context mentions that the two quadrilaterals are similar... meaning their sides are proportional...
So... you basically have to find the scale factor...
(the math itself is easier than the explanation...
51/16 = 3.1875 (that is the number we multiplied the sides of quadrilateral FGHI to get quadrilateral JKLM...
so to get side JK all you have to do is multiply that scale factor by side FG... which after the use of a calculator results in 66.9 (i rounded, and used a calculator... lol)
but yeah... i hope this helps...
Answer:
a) OA = 1 unit
b) OB = 3 units
c) AB = √10 units
Step-by-step explanation:
<u>Given function</u>:
<h3><u>Part (a)</u></h3>
Point A is the y-intercept of the exponential curve (so when x = 0).
To find the y-value of Point A, substitute x = 0 into the function:
Therefore, A (0, 1) so OA = 1 unit.
<h3><u>Part (b)</u></h3>
If BC = 8 units then the y-value of Point C is 8.
The find the x-value of Point C, set the function to 8 and solve for x:
Therefore, C (3, 8) so Point B is (3, 0). Therefore, OB = 3 units.
<h3><u>Part (c)</u></h3>
From parts (a) and (b):
To find the length of AB, use the distance between two points formula:
Therefore:
The range of the primary phone data is 0.28.
The range of the secondary phone data is 0.73.
The median of the secondary phone data is 0.48 g larger than the median of the primary phone data.
To find the range of the primary phone data, subtract the largest and the smallest values:
0.35 - 0.07 = 0.28
To find the range of the secondary phone data, subtract the largest and the smallest values:
1.18 - 0.45 = 0.73
To find the median of the primary phone data, arrange the data from least to greatest and then find the middle value:
0.07, 0.08, 0.1, 0.1, 0.12, 0.13, 0.14, 0.22, 0.35 - the middle is 0.12
To find the median of the secondary phone data, arrange the data from least to greatest and then find the middle value:
0.45, 0.45, 0.5, 0.6, 0.6, 0.68, 0.82, 0.91, 1.18 - the middle is 0.6
The median of the secondary phone data, 0.6, is 0.6-0.12 larger than the median of the primary phone data; 0.6-0.12 = 0.48