It is 102.5. You made it kind of confusing at first by putting the divisor first in your question then putting your dividend, but I understand what you meant.
Answer:
A = 14.2/1.1 hours
B = 5.091 hours
Step-by-step explanation:
Formulate 2 simultaneous equations
5.7A + 6.8B = 111.40..........(1)
A +B =18...............................(2)
Multiply each item in (2) by 5.7 to get
5.7A + 5.7B = 97.2............(3)
subtract (1) - (3) on each side
5.7A -5.7A + 6.8B - 5.7B = 111.40 -97.2
1.1B = 14.2
B = 14.2 /1.1
to get A use equation (2)
A = 18 - B
A = 18 - 14.2/1.1 = 5.091
Answer:
The third side is around 58.043
Step-by-step explanation:
Use the law of cosines: 
Plug in the two sides we know (into a and b) and the angle we know (into angle C).
Thus:
Use a calculator:


(Note: Make sure you're in Degrees mode.)
Answer: 0.025
Step-by-step explanation:
Given : A statistics professor plans classes so carefully that the lengths of her classes are uniformly distributed between the interval [48.0 minutes, 58.0 minutes].
The probability density function :-

Now, the probability that a given class period runs between 50.25 and 50.5 minutes is given by :-
![\int^{50.5}_{50.25}\ f(x)\ dx\\\\=\int^{50.5}_{50.25}\ \dfrac{1}{10}\ dx\\\\=\dfrac{1}{10}|x|^{50.5}_{50.25}\\\\=\dfrac{1}{10}\ [50.5-50.25]=\dfrac{1}{10}\times(0.25)=0.025](https://tex.z-dn.net/?f=%5Cint%5E%7B50.5%7D_%7B50.25%7D%5C%20f%28x%29%5C%20dx%5C%5C%5C%5C%3D%5Cint%5E%7B50.5%7D_%7B50.25%7D%5C%20%5Cdfrac%7B1%7D%7B10%7D%5C%20dx%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B10%7D%7Cx%7C%5E%7B50.5%7D_%7B50.25%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B10%7D%5C%20%5B50.5-50.25%5D%3D%5Cdfrac%7B1%7D%7B10%7D%5Ctimes%280.25%29%3D0.025)
Hence, the probability that a given class period runs between 50.25 and 50.5 minutes =0.025
Similarly , the probability of selecting a class that runs between 50.25 and 50.5 minutes = 0.025