Answer:
Since the calculated value of t =-0.427 does not fall in the critical region so we accept H0 and conclude that there is enough evidence to show that mean difference in the age of onset of symptoms and age of diagnosis is 25 months .
Step-by-step explanation:
The given data is
Difference d= -24 -12 -55 -15 -30 -60 -14 -21 -48 -12 -25 -53 -61 -69 -80
∑ d= -579
∑d²= 29871
1) Let the hypotheses be
H0: ud= 25 against the claim Ha: ud ≠25
H0 : mean difference in the age of onset of symptoms and age of diagnosis is 25 months .
Ha: mean difference in the age of onset of symptoms and age of diagnosis is not 25 months.
2) The degrees of freedom = n-1= 15-1= 14
3) The significance level is 0.05
4) The test statistic is
t= d`/sd/√n
The critical region is ║t║≤ t (0.025,14) = ±2.145
d`= ∑di/n= -579/15= -38.6
Sd= 23.178 (using calculators)
Therefore
t= d`/ sd/√n
t= -38.6/ 23.178√15
t= -1.655/3.872= -0.427
5) Since the calculated value of t =-0.427 does not fall in the critical region so we accept H0 and conclude that there is enough evidence to show that mean difference in the age of onset of symptoms and age of diagnosis is 25 months .
Answer: 
Step-by-step explanation:
1. You know that:
- The roped-off area whose width is represented with <em>x,</em> it is created around a rectangular museum.
- The dimensions of the rectangular museum are: 30 ft by 10 ft.
- The combined area of the display and the roped-off area is 800 ft².
2. The area of the rectangular museum can be calculated with:

Where
is the lenght and
is the width.
You have that the lenght and the width in feet are:

3. Let's call
the width of the roped-off area. Then, the combined area is:

Where



4. Substitute values and simplify. Then:


Answer:
Domain is x-values'
ranges y-values'
domain: x>=1
Range: y<=0
Step-by-step explanation:
Answer:
45$ per house cleaned
Step-by-step explanation:
135$ / 3 houses = 45
225$/ 5 houses = 45