Answer: 3
Step-by-step explanation:
Answer:
a. 11.26 % b. 6.76 %. It appears so since 6.76 % ≠ 15 %
Step-by-step explanation:
a. This is a binomial probability.
Let q = probability of giving out wrong number = 15 % = 0.15
p = probability of not giving out wrong number = 1 - q = 1 - 0.15 = 0.75
For a binomial probability, P(x) = ⁿCₓqˣpⁿ⁻ˣ. With n = 10 and x = 1, the probability of getting a number wrong P(x = 1) = ¹⁰C₁q¹p¹⁰⁻¹
= 10(0.15)(0.75)⁹
= 1.5(0.0751)
= 0.1126
= 11.26 %
b. At most one wrong is P(x ≤ 1) = P(0) + P(1)
= ¹⁰C₀q⁰p¹⁰⁻⁰ + ¹⁰C₁q¹p¹⁰⁻¹
= 1 × 1 × (0.75)¹⁰ + 10(0.15)(0.75)⁹
= 0.0563 + 0.01126
= 0.06756
= 6.756 %
≅ 6.76 %
Since the probability of at most one wrong number i got P(x ≤ 1) = 6.76 % ≠ 15 % the original probability of at most one are not equal, it thus appears that the original probability of 15 % is wrong.
The question as presented is incomplete, here is the complete question with the multiple choice:
The sequence a1 = 6, an = 3an − 1 can also be
written as:
1) an = 6 ⋅ 3^n
2) an = 6 ⋅ 3^(n + 1)
3) an = 2 ⋅ 3^n
4) an = 2 ⋅ 3^(n + 1)
The correct choice is option 3) an = 2⋅3^n.
If we look at the initial sequence an = 3⋅an-1, and
a1 = 3⋅a0 = 6
a0 = 6/3
a0 = 2
We can now look at the sequence.
a0 = 2
a1 = 6
a2 = 18
a3 = 54
etc...
A common factor in each of those numbers is 2, so we can rewrite the sequence by factoring out 2.
a0 = 2⋅1
a1 = 2⋅3
a2 = 2⋅9
a3 = 2⋅27
The numbers being multiplied by 2 are all factors of 3. So we can rewrite the sequence again as:
a0 = 2⋅3^0
a1 = 2⋅3^1
a2 = 2⋅3^2
a3 = 2⋅3^3
This sequence can now be rewritten as an = 2⋅3^n.
Answer:
A
Step-by-step explanation:
Hopefully this helps