Given that the function is given by:
c(p)=p^2-28p+250
The minimum value of the function is at the derivative of c'(p)
thus from the function given:
c(p)=p^2-28p+250
c'(p)=2p-28
Thus the minimum function is c'(p)=2p-28
21.99 divided by 18.5
Then 34.99 divided by 32 See what is the cheapest. Sorry I have no calculator with me but you got it from here
9^2 < 6^2 + 8^2
so its acute angled.
*NOT THE ANSWER** BUT this is how its done
The dollar value v(t) of a certain car model that is t years old is given by the following exponential function. v(t) = 29,900(0.80^t) Find the initial value of the car and the value after 12 years. Round your answers to the nearest dollar as necessary
V(0)=29,900 X .80^0=29,900 X 1=$29,900 initial value of the car.
V(12)=29,900 X .80^12
V(12)=29,900 X 0.068719476736=$2,054.71value of the car after 12 years.
Answer:3×x=15
x=15÷3.
X=5
<h2>5 is the correct answer</h2><h3>
<em>hope</em><em> it</em><em> helps</em><em> you</em><em> have</em><em> a</em><em> great</em><em> day</em><em> keep</em><em> smiling</em><em> be</em><em> happy</em><em> stay</em><em> </em><em>safe</em></h3>
<em>answer </em><em>is </em><em>5</em><em> </em><em>because</em><em> </em><em>1</em><em>5</em><em> </em><em>divided</em><em> </em><em>b</em><em>y</em><em> </em><em>3</em><em> </em><em> </em><em>is </em><em>5</em><em> </em><em>3</em><em>×</em><em>5</em><em>=</em><em>1</em><em>5</em><em> </em>