28. 20 cookies= 6 ounces
?=15 ounces
(20*15)/6 = 300/6 = 50 cookies
Answer:
5 3/7
Step-by-step explanation:
On this one all you basically have to do is 4+1 since they are both whole numbers, then attatch the fraction onto that.
4+1=5
5 3/7
Answer:
Step-by-step explanation:
<u>The proportion is:</u>
<u>Out of 50 times, the player will reach first base:</u>
Complete Question
Evaluate the Fermi function for an energy kT above the Fermi energy. Find the temperature at which there is a 1% probability that a state, with an energy 0.5 eV above the Fermi energy, will be occupied by an electron.
Answer:
a
The Fermi function for the energy KT is 
b
The temperature is 
Step-by-step explanation:
From the question we are told that
The energy considered is 
Generally the Fermi function is mathematically represented as
![F(E_o) = \frac{1}{e^{\frac{[E_o - E_F]}{KT} } + 1 }](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5BE_o%20-%20E_F%5D%7D%7BKT%7D%20%7D%20%2B%201%20%7D)
Here K is the Boltzmann constant with value 
is the Fermi energy
is the initial energy level which is mathematically represented as

So
![F(E_o) = \frac{1}{e^{\frac{[[E_F + KT] - E_F]}{KT} } + 1}](https://tex.z-dn.net/?f=F%28E_o%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5B%5BE_F%20%2B%20KT%5D%20-%20E_F%5D%7D%7BKT%7D%20%7D%20%2B%201%7D)
=> 
=> 
=> 
Generally the probability that a state, with an energy 0.5 eV above the Fermi energy, will be occupied by an electron is mathematically represented by the Fermi function as
![F(E_k) = \frac{1}{e^{\frac{[E_k - E_F]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=F%28E_k%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5BE_k%20-%20E_F%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
Here
is that energy level that is 0.5 ev above the Fermi energy 
=> ![F(E_k) = \frac{1}{e^{\frac{[[0.50 eV + E_F] - E_F]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=F%28E_k%29%20%3D%20%20%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B%5B%5B0.50%20eV%20%2B%20E_F%5D%20-%20E_F%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
=> ![\frac{1}{e^{\frac{0.50 eV ]}{KT_k} } + 1 } = 0.01](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Be%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%2B%201%20%7D%20%20%3D%200.01)
=> ![1 = 0.01 * e^{\frac{0.50 eV ]}{KT_k} } + 0.01](https://tex.z-dn.net/?f=1%20%3D%200.01%20%2A%20e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%2B%200.01)
=> ![0.99 = 0.01 * e^{\frac{0.50 eV ]}{KT_k} }](https://tex.z-dn.net/?f=0.99%20%3D%200.01%20%2A%20e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D)
=> ![e^{\frac{0.50 eV ]}{KT_k} } = 99](https://tex.z-dn.net/?f=e%5E%7B%5Cfrac%7B0.50%20eV%20%5D%7D%7BKT_k%7D%20%7D%20%20%3D%2099)
Taking natural log of both sides
=> 
=> 
Note eV is electron volt and the equivalence in Joule is 
So

=> 
1. Change both numbers to common base.
2. Use quotient rule 
e)
You can write 9 as 3², then both numbers have the same base.
, where x is the exponent
I cannot really see the exponents because picture is bad quality.




You want to replace x and y with actual numbers, but as I said the picture is too bad.
f)
Convert to base 4, then quotient rule.
g)
Use the quotient rule, you already have same base.
h)
Convert to base
, then quotient rule.