We will use integration by substitution, as well as the integrals
∫
1
x
d
x
=
ln
|
x
|
+
C
and
∫
1
d
x
=
x
+
C
∫
x
3
x
2
+
1
d
x
=
∫
x
2
x
2
+
1
x
d
x
=
1
2
∫
(
x
2
+
1
)
−
1
x
2
+
1
2
x
d
x
Let
u
=
x
2
+
1
⇒
d
u
=
2
x
d
x
. Then
1
2
∫
(
x
2
+
1
)
−
1
x
2
+
1
2
x
d
x
=
1
2
∫
u
−
1
u
d
u
=
1
2
∫
(
1
−
1
u
)
d
u
=
1
2
(
u
−
ln
|
u
|
)
+
C
=
x
2
+
1
2
−
ln
(
x
2
+
1
)
2
+
C
=
x
2
2
−
ln
(
x
2
+
1
)
2
+
1
2
+
C
=
x
2
−
ln
(
x
2
+
1
)
2
+
C
Final answer
D fed ifjk vs cjsioxhdjducjskvuhdkfuxhxiufuc
Theres 60 seconds in a minute. If it takes her 5 minutes, multiply 60 by 5. you will get 300. then all you will do is divide the meters by 300 seconds. you will get the answer of 1.5 metres per second.
<h2><u>EQUATION</u></h2><h3>Exercise</h3>
2(3 + 3y) + y = 11
First, apply the distributive property:
2(3 + 3y) + y = 11
6 + 6y + y = 11
6 + 7y = 11
Substract 6 from both sides:
6 - 6 + 7y = 11 - 6
7y = 5
Divide both sides by 7:


<h3><u>Answer</u>. The value of y = 5/7.</h3>
2/3
6x = 4
x = 2/3
The scale factor can be determined by using similar sides