Answer:
Subtraction is an arithmetic operation that represents the operation of removing objects from a collection. The result of a subtraction is called a difference. Subtraction is signified by the minus sign (−). For example, in the adjacent picture, there are 5 − 2 apples—meaning 5 apples with 2 taken away, which is a total of 3 apples. Therefore, the difference of 5 and 2 is 3, that is, 5 − 2 = 3. Subtraction represents removing or decreasing physical and abstract quantities using different kinds of objects including negative numbers, fractions, irrational numbers, vectors, decimals, functions, and matrices.
Subtraction follows several important patterns. It is anticommutative, meaning that changing the order changes the sign of the answer. It is also not associative, meaning that when one subtracts more than two numbers, the order in which subtraction is performed matters. Because 0 is the additive identity, subtraction of it does not change a number. Subtraction also obeys predictable rules concerning related operations such as addition and multiplication. All of these rules can be proven, starting with the subtraction of integers and generalizing up through the real numbers and beyond. General binary operations that continue these patterns are studied in abstract algebra.
Performing subtraction is one of the simplest numerical tasks. Subtraction of very small numbers is accessible to young children. In primary education, students are taught to subtract numbers in the decimal system, starting with single digits and progressively tackling more difficult problems.
In advanced algebra and in computer algebra, an expression involving subtraction like A − B is generally treated as a shorthand notation for the addition A + (−B). Thus, A − B contains two terms, namely A and −B. This allows an easier use of associativity and commutativity.
Answer:
0.6 is the probability of success of a single trial of the experiment
Complete Problem Statement:
In a binomial experiment with 45 trials, the probability of more than 25 successes can be approximated by 
What is the probability of success of a single trial of this experiment?
Options:
Step-by-step explanation:
So to solve this, we need to use the binomial distribution. When using an approximation of a binomially distributed variable through normal distribution , we get:
=
now,

so,
by comparing with
, we get:
μ=np=27
=3.29
put np=27
we get:
=3.29
take square on both sides:
10.8241=27-27p
27p=27-10.8241
p=0.6
Which is the probability of success of a single trial of the experiment
Answer:
See below.
Step-by-step explanation:
Squaring a number means to multiply the number by itself.
For example, 3^2 means 3 * 3.
8^2 means 8 * 8.
(-6)^2 means (-6) * (-6).
In each case above, you see that the number that is squared is multiplied by itself.
In this case, (-4.5)^2, squaring the number -4.5, means multiply the number -4.5 by the number -4.5
(-4.5)^2 = (-4.5) * (-4.5)
Now we need to actually multiply -4.5 by -4.5
When you multiply a negative number by a negative number, the result is positive, so the product of -4.5 and -4.5 is a positive number. To find that number, you multiply 4.5 by 4.5
4.5 * 4.5 = 20.25
Therefore, (-4.5)^2 = 20.25
Let d(x) = 2x - 4
Or
y = 2x - 4
We have replace x = y
x = 2y - 4
Now Isolate "y"
x + 4 = 2y
Pass "2" dividing
(x + 4) / 2 = y
y = x/2 + 2
Or
d(x)^-1 = x/2 + 2
Answer:
A
Step-by-step explanation:
d = 0.5 * t There are no conversions. You just substitute the value for t.
d = 0.5 * 27.9
d = 13.95 which is A