If

is an integer, you can use induction. First show the inequality holds for

. You have

, which is true.
Now assume this holds in general for

, i.e. that

. We want to prove the statement then must hold for

.
Because

, you have

and this must be greater than

for the statement to be true, so we require

for

. Well this is obviously true, because solving the inequality gives

. So you're done.
If you

is any real number, you can use derivatives to show that

increases monotonically and faster than

.
Answer:
Volume: 112 m³.
Surface area: 172 m².
Step-by-step explanation:
The volume is the base times height times length. So, the volume will be 2 * 8 * 7 = 16 * 7 = 112 m³.
The surface area is 2lw + 2lh + 2wh. l = 8; w = 7; h = 2.
2(8)(7) + 2(8)(2) + 2(7)(2) = 2 * 56 + 2 * 16 + 2 * 14 = 112 + 32 + 28 = 112 + 60 = 172 m².
Hope this helps!
Simply multiply 4 for the terms in the parenthesis
4x-4
Answer:
<em><u>9</u></em><em><u>0</u></em><em><u>. </u></em><em><u>(</u></em><em><u> </u></em><em><u>was </u></em><em><u>the </u></em><em><u>full </u></em><em><u>capacity</u></em><em><u> of</u></em><em><u> </u></em><em><u>jug</u></em><em><u>)</u></em>
<em><u>to </u></em><em><u>solve </u></em><em><u>this</u></em><em><u> </u></em>
<em><u>firstly</u></em><em><u> </u></em><em><u>let </u></em><em><u>the </u></em><em><u>full </u></em><em><u>capacity</u></em><em><u> </u></em><em><u>of </u></em><em><u>jug </u></em><em><u> </u></em>
<em><u> </u></em><em><u> </u></em>
<em><u>be</u></em><em><u>. </u></em><em><u>x</u></em>
<em><u>so,</u></em><em><u> </u></em>
<em><u>4</u></em><em><u>/</u></em><em><u>5</u></em><em><u>*</u></em><em><u>x </u></em><em><u>=</u></em><em><u> </u></em><em><u>7</u></em><em><u>2</u></em>
<em><u>x </u></em><em><u>=</u></em><em><u> </u></em><em><u>7</u></em><em><u>2</u></em><em><u>*</u></em><em><u>5</u></em><em><u>/</u></em><em><u>4</u></em>
<em><u>x </u></em><em><u>=</u></em><em><u> </u></em><em><u>9</u></em><em><u>0</u></em>
<em><u>hope</u></em><em><u> it</u></em><em><u> helps</u></em>
Spinal Cord
hope this helps