It's 1/7 e 7 x. the seven and the x are exponents.
Answer:
The series is absolutely convergent.
Step-by-step explanation:
By ratio test, we find the limit as n approaches infinity of
|[a_(n+1)]/a_n|
a_n = (-1)^(n - 1).(3^n)/(2^n.n^3)
a_(n+1) = (-1)^n.3^(n+1)/(2^(n+1).(n+1)^3)
[a_(n+1)]/a_n = [(-1)^n.3^(n+1)/(2^(n+1).(n+1)^3)] × [(2^n.n^3)/(-1)^(n - 1).(3^n)]
= |-3n³/2(n+1)³|
= 3n³/2(n+1)³
= (3/2)[1/(1 + 1/n)³]
Now, we take the limit of (3/2)[1/(1 + 1/n)³] as n approaches infinity
= (3/2)limit of [1/(1 + 1/n)³] as n approaches infinity
= 3/2 × 1
= 3/2
The series is therefore, absolutely convergent, and the limit is 3/2
Answer:
We are required to find the proportion of observations from a normal distribution that are greater than 1.36. Mathematically, it can be written as:

To find this proportion, we can use the standard normal table. Using the standard normal table, we have:

Therefore, the proportion of observations from a standard normal distribution that take values greater than 1.36 is 0.0869.
Answer:
should be C/.Hope that helps