Answer:
y = 
Step-by-step explanation:
From the given table,
Two points are (1, 15) and (7, 47)
If the two points
and
are lying on a line then slope 'm' of the line will be,
m = 
= 
= 
= 
Let the equation of a line passing through (h, k) is,
y - h = m(x - k)
If the line passes through (1, 15)
y - 1 = 
y = 
y = 
y = 
Find the prime factorization
45=3*3*5
60=2*2*3*5
GCF=3*5=15
45=3*15
60=4*15
remember
ab+ac=a(b+c) so
45+60=15(3)+15(4)=15(3+4)=15(7)=105
Answer:
3n^2+9+5n^4+55n
Step-by-step explanation:
Steps
$\left(3n^2+9+5n^4-3n\right)+\left(-9n\left(-7\right)-5n\right)$
$\mathrm{Remove\:parentheses}:\quad\left(a\right)=a,\:-\left(-a\right)=a$
$=3n^2+9+5n^4-3n+9n\cdot\:7-5n$
$\mathrm{Add\:similar\:elements:}\:-3n-5n=-8n$
$=3n^2+9+5n^4-8n+9\cdot\:7n$
$\mathrm{Multiply\:the\:numbers:}\:9\cdot\:7=63$
$=3n^2+9+5n^4-8n+63n$
$\mathrm{Add\:similar\:elements:}\:-8n+63n=55n$
$=3n^2+9+5n^4+55n$
Answer:
Step-by-step explanation:
Given the explicit function as
f(n) = 15n+4
The first term of the sequence is at when n= 1
f(1) = 15(1)+4
f(1) = 19
a = 19
Common difference d = f(2)-f(1)
f(2) = 15(2)+4
f(2) = 34
d = 34-19
d = 15
Sum of nth term of an AP = n/2{2a+(n-1)d}
S20 = 20/2{2(19)+(20-1)15)
S20 = 10(38+19(15))
S20 = 10(38+285)
S20 = 10(323)
S20 = 3230.
Sum of the 20th term is 3230
For the explicit function
f(n) = 4n+15
f(1) = 4(1)+15
f(1) = 19
a = 19
Common difference d = f(2)-f(1)
f(2) = 4(2)+15
f(2) = 23
d = 23-19
d = 4
Sum of nth term of an AP = n/2{2a+(n-1)d}
S20 = 20/2{2(19)+(20-1)4)
S20 = 10(38+19(4))
S20 = 10(38+76)
S20 = 10(114)
S20 = 1140
Sum of the 20th terms is 1140