1. x^15
2. m^40
3. v^7/2
4. k^4
5. 1/x^14
6. 1/r^3/2
7. b^25
8. h^2
9. m^3n^1/7
10. x^12
11. 1/g^37
12. 1/100m^6
13. j^6/216
14. 1/125f^3
15. 3z^1/2
16. 1/100m^6
17. j^6/216
18.1/81d^20
19. 1
20. g^1/2 r^3
21. 16a^11
22. m^16n^21
23. 1
24. 1/y^10x^6
25. 343s^10/t^17/2
26.n^17/2 /m^10/2
27. 729/b^24c^9
28. 20y^2/x^33
Answer:
any picture or can you tell us what the amounts stand for?
Answer:
No it cant
Step-by-step explanation:
it cant
Answer:
1/3
Step-by-step explanation:
To change from one base to another, we use the formula
Logb x = Loga x/Loga b
log1/9 (3^(1/3) /3)
log3 ((3^(1/3) /3))
-------------------------
log3 (1/9)
Log a /b = log a - log b
and 1/9 = 3^-2
log3 ((3^(1/3) ) - log3 (3)
-------------------------
log3 (3^-2)
log a^b = blog a
1/3 log3 (3 ) - log3 (3)
-------------------------
-2log3 (3)
We know log3 (3) =1
1/3 (1) - 1
-------------------------
-2 (1)
1/3 - 1
-------------------------
-2
-2/3
------
-2
Copy dot flip
-2/3 * -1/2
1/3