Answer:
The answer is below
Step-by-step explanation:
Plotting the following constraints using the online geogebra graphing tool:
x + 3y ≤ 9 (1)
5x + 2y ≤ 20 (2)
x≥1 and y≥2 (3)
From the graph plot, the solution to the constraint is A(1, 2), B(1, 2.67) and C(3, 2).
We need to minimize the objective function C = 5x + 3y. Therefore:
At point A(1, 2): C = 5(1) + 3(2) = 11
At point B(1, 2.67): C = 5(1) + 3(2.67) = 13
At point C(3, 2): C = 5(3) + 3(2) = 21
Therefore the minimum value of the objective function C = 5x + 3y is at point A(1, 2) which gives a minimum value of 11.
The answer is B because -84 divided by -28 equals 3 and -6 divided by -2 equals 3
Linear. They all follow the format y=mx+c wether or not they have been rearranged.
True. No imaginary number is considered "whole", all whole numbers are rational and real.