\left[x _{2}\right] = \left[ \frac{-1+i \,\sqrt{3}+2\,by+\left( -2\,i \right) \,\sqrt{3}\,by}{2^{\frac{2}{3}}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}+\frac{\frac{ - \sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{24}+\left( \frac{-1}{24}\,i \right) \,\sqrt{3}\,\sqrt[3]{\left( 432\,by+\sqrt{\left( -6912+41472\,by+103680\,by^{2}+55296\,by^{3}\right) }\right) }}{\sqrt[3]{2}}\right][x2]=⎣⎢⎢⎢⎢⎡2323√(432by+√(−6912+41472by+103680by2+55296by3))−1+i√3+2by+(−2i)√3by+3√224−3√(432by+√(−6912+41472by+103680by2+55296by3))+(24−1i)√33√(432by+√(−6912+41472by+103680by2+55296by3))⎦⎥⎥⎥⎥⎤
totally answer.
the answer is d and now pls help me pls
On a right triangle, to find one missing side you can use this equation
a^2 + b^2 = c^2
a and b are the sides next to the right angle, and c is the hypotenuse (side not connected to right angle).
You first need to find the length of the dotted line before finding x. This is because to be able to use the above formula, you have to know the length of two out of three of the sides.
To solve the length of the dotted line, note that it also makes a triangle with the 5 unit line and the 5 √5 unit line. You can plug these numbers into the formula.
(5)^2+b^2=(5 √5)^2
25+b^2=125
b^2=100
b=10
Now that you know the length of the dotted line is 10 units, you can now solve for x
(20)^2+(10)^2=x^2
400+100=x^2
500=x^2
x= √500, which equals 22.361
Answer:
a = -0.3575
Step-by-step explanation:
The points A and D lie on the x-axis, this means that they are the x-intercepts of the parabola, and therefore we can find their location.
The points A and B are located where

This gives


Now given the coordinates of A, we are in position to find the coordinates of the point B. Point B must have y coordinate of y=2 (because the base of the trapezoid is at y=0), and the x coordinate of B, looking at the figure, must be x coordinate of A plus horizontal distance between A and B, i.e

Thus the coordinates of B are:

Now this point B lies on the parabola, and therefore it must satisfy the equation 
Thus

Therefore


Answer:
Step-by-step explanation:
242=b+49