necessary to make a whole complete; essential or fundamental or <span> or denoted by an integer.
</span>
Given:
The system Mx+Ny=P has a solution (1,3) where Rx+Sy=T; <span>M, N, P, R,S and T are non-zero real numbers.
Solve for M, N, R, P, S, T:
M +3N = P
R + 3S = T
The given choices should simplify to the equations above.
A) Mx +Ny = P
7Rx + 7Sy = 7T
7(Rx + Sy) = 7T
Rx + Sy = T
remarks: CORRECT
B) (M+R)x + (N+S)y = P + T
Rx + Sy = T
Mx + Rx + Ny + Sy = P + T
Mx + Ny + T = P + T
Mx + Ny = P
remarks: CORRECT
C) Mx + Ny = P
(2M - R)x + (2N - S)y = P - 2T
2Mx - Rx + 2Ny - Sy = P - 2T
2(Mx + Ny) - (Rx + Sy) = P - 2T
2P - (Rx + Sy) = P - 2T
remarks: INCORRECT
</span>
Answer:
x = 12
Step-by-step explanation:
Solve for x:
(-3 x)/2 - 9 = -27
Put each term in (-3 x)/2 - 9 over the common denominator 2: (-3 x)/2 - 9 = (-18)/2 - (3 x)/2:
(-18)/2 - (3 x)/2 = -27
(-18)/2 - (3 x)/2 = (-3 x - 18)/2:
(-3 x - 18)/2 = -27
Multiply both sides of (-3 x - 18)/2 = -27 by 2:
(2 (-3 x - 18))/2 = -27×2
(2 (-3 x - 18))/2 = 2/2×(-3 x - 18) = -3 x - 18:
-3 x - 18 = -27×2
2 (-27) = -54:
-3 x - 18 = -54
Add 18 to both sides:
(18 - 18) - 3 x = 18 - 54
18 - 18 = 0:
-3 x = 18 - 54
18 - 54 = -36:
-3 x = -36
Divide both sides of -3 x = -36 by -3:
(-3 x)/(-3) = (-36)/(-3)
(-3)/(-3) = 1:
x = (-36)/(-3)
The gcd of -36 and -3 is -3, so (-36)/(-3) = (-3×12)/(-3×1) = (-3)/(-3)×12 = 12:
Answer: x = 12
Answer:
12
Step-by-step explanation:
X^2 = (7+9)(9) -->
X^2 = 16(9) -->
X = 12