Answer:
$95.5090 must be deposited monthly
Step-by-step explanation:
From the information given:
The annual interest rate (r) = 4.2% = 0.042
Let assume that an amount Y is deposited, then after one month, it will increase to:
![Y ( 1+ \dfrac{0.042}{12})](https://tex.z-dn.net/?f=Y%20%28%201%2B%20%5Cdfrac%7B0.042%7D%7B12%7D%29)
The total amount after 4 years will be:
![= Y ( 1+ \dfrac{0.042}{12})^{48}+Y ( 1+ \dfrac{0.042}{12})^{47} +Y ( 1+ \dfrac{0.042}{12})^{46} +...+ Y ( 1+ \dfrac{0.042}{12})](https://tex.z-dn.net/?f=%3D%20Y%20%28%201%2B%20%5Cdfrac%7B0.042%7D%7B12%7D%29%5E%7B48%7D%2BY%20%28%201%2B%20%5Cdfrac%7B0.042%7D%7B12%7D%29%5E%7B47%7D%20%2BY%20%28%201%2B%20%5Cdfrac%7B0.042%7D%7B12%7D%29%5E%7B46%7D%20%2B...%2B%20Y%20%28%201%2B%20%5Cdfrac%7B0.042%7D%7B12%7D%29)
![= Y ( 1.0035)^{48}+Y ( 1.0035)^{47} +Y( 1.0035)^{46} +...+ Y( 1.0035)](https://tex.z-dn.net/?f=%3D%20Y%20%28%201.0035%29%5E%7B48%7D%2BY%20%28%201.0035%29%5E%7B47%7D%20%2BY%28%201.0035%29%5E%7B46%7D%20%2B...%2B%20Y%28%201.0035%29)
Using the sum of a geometric progression:
![= Y (1.0035) \dfrac{ (1.0035^{48}-1)}{(1.0035-1)}](https://tex.z-dn.net/?f=%3D%20Y%20%281.0035%29%20%5Cdfrac%7B%20%281.0035%5E%7B48%7D-1%29%7D%7B%281.0035-1%29%7D)
![= Y (1.0035) \dfrac{ (1.0035^{48}-1)}{0.0035}](https://tex.z-dn.net/?f=%3D%20Y%20%281.0035%29%20%5Cdfrac%7B%20%281.0035%5E%7B48%7D-1%29%7D%7B0.0035%7D)
The above amount is then equal to $5000
i.e
![= Y (1.0035) \dfrac{ (1.0035^{48}-1)}{0.0035} = 5000](https://tex.z-dn.net/?f=%3D%20Y%20%281.0035%29%20%5Cdfrac%7B%20%281.0035%5E%7B48%7D-1%29%7D%7B0.0035%7D%20%3D%205000)
![Y = \dfrac{5000\times 0.0035}{(1.0035)(1.0035^{48}-1)} \\ \\ \mathbf{Y = \$95.5090}](https://tex.z-dn.net/?f=Y%20%3D%20%20%5Cdfrac%7B5000%5Ctimes%200.0035%7D%7B%281.0035%29%281.0035%5E%7B48%7D-1%29%7D%20%5C%5C%20%5C%5C%20%20%5Cmathbf%7BY%20%3D%20%5C%2495.5090%7D)
It’s B because they both equal each other I would explain more but I’m in class but the answer is definitely B
Answer:
Commutative property
Step-by-step explanation:
Hope that helps!
The answer to your question is 72 inches.