Note that
Answer:
Mary's risk premium is $0.9375
Step-by-step explanation:
Mary's utility function,
Mary's initial wealth = $100
The gamble has a 50% probability of raising her wealth to $115 and a 50% probability of lowering it to $77
Expected wealth of Mary, ![E_w](https://tex.z-dn.net/?f=E_w)
= (0.5 * $115) + (0.5 * $77)
= 57.5 + 38.5
= $96
The expected value of Mary's wealth is $96
Calculate the expected utility (EU) of Mary:-
![E_u = [0.5 * U(115)] + [0.5 * U(77)]\\E_u = [0.5 * 115^{0.5}] + [0.5 * 77^{0.5}]\\E_u = 5.36 + 4.39\\E_u = \$ 9.75](https://tex.z-dn.net/?f=E_u%20%3D%20%5B0.5%20%2A%20U%28115%29%5D%20%2B%20%5B0.5%20%2A%20U%2877%29%5D%5C%5CE_u%20%3D%20%5B0.5%20%2A%20115%5E%7B0.5%7D%5D%20%2B%20%5B0.5%20%2A%2077%5E%7B0.5%7D%5D%5C%5CE_u%20%3D%205.36%20%2B%204.39%5C%5CE_u%20%3D%20%5C%24%209.75)
The expected utility of Mary is $9.75
Mary will be willing to pay an amount P as risk premium to avoid taking the risk, where
U(EW - P) is equal to Mary's expected utility from the risky gamble.
U(EW - P) = EU
U(94 - P) = 9.63
Square root (94 - P) = 9.63
If Mary's risk premium is P, the expected utility will be given by the formula:
![E_{u} = U(E_{w} - P)\\E_{u} = U(96 - P)\\E_u = (96 - P)^{0.5}\\(E_u)^2 = 96 - P\\ 9.75^2 = 96 - P\\95.0625 = 96 - P\\P = 96 - 95.0625\\P = 0.9375](https://tex.z-dn.net/?f=E_%7Bu%7D%20%3D%20U%28E_%7Bw%7D%20-%20P%29%5C%5CE_%7Bu%7D%20%3D%20U%2896%20-%20P%29%5C%5CE_u%20%3D%20%2896%20-%20P%29%5E%7B0.5%7D%5C%5C%28E_u%29%5E2%20%3D%2096%20-%20P%5C%5C%209.75%5E2%20%3D%2096%20-%20P%5C%5C95.0625%20%3D%2096%20-%20P%5C%5CP%20%3D%2096%20-%2095.0625%5C%5CP%20%3D%200.9375)
Mary's risk premium is $0.9375