I hope the choices for the numerators of the solutions are given.
I am showing the complete work to find the solutions of this equation , it will help you to find an answer of your question based on this solution.
The standard form of a quadratic equation is :
ax² + bx + c = 0
And the quadratic formula is:
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
So, first step is to compare the given equation with the above equation to get the value of a, b and c.
So, a = 10, b = -19 and c = 6.
Next step is to plug in these values in the above formula. Therefore,




So, 

So, 
Hope this helps you!
let's firstly change the 1.2 to a fraction
![1.\underline{2}\implies \cfrac{12}{1\underline{0}}\implies \cfrac{6}{5} \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{10}~,~\stackrel{y_1}{6})\qquad (\stackrel{x_2}{4}~,~\stackrel{y_2}{\frac{6}{5}}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{\frac{6}{5}}-\stackrel{y1}{6}}}{\underset{run} {\underset{x_2}{4}-\underset{x_1}{10}}}\implies \cfrac{~~ \frac{6-30}{5}~~}{-6}\implies \cfrac{~~ \frac{-24}{5}~~}{-6}\implies \cfrac{~~ -\frac{24}{5}~~}{-\frac{6}{1}}](https://tex.z-dn.net/?f=1.%5Cunderline%7B2%7D%5Cimplies%20%5Ccfrac%7B12%7D%7B1%5Cunderline%7B0%7D%7D%5Cimplies%20%5Ccfrac%7B6%7D%7B5%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B10%7D~%2C~%5Cstackrel%7By_1%7D%7B6%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B%5Cfrac%7B6%7D%7B5%7D%7D%29%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B%5Cfrac%7B6%7D%7B5%7D%7D-%5Cstackrel%7By1%7D%7B6%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B4%7D-%5Cunderset%7Bx_1%7D%7B10%7D%7D%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B6-30%7D%7B5%7D~~%7D%7B-6%7D%5Cimplies%20%5Ccfrac%7B~~%20%5Cfrac%7B-24%7D%7B5%7D~~%7D%7B-6%7D%5Cimplies%20%5Ccfrac%7B~~%20-%5Cfrac%7B24%7D%7B5%7D~~%7D%7B-%5Cfrac%7B6%7D%7B1%7D%7D)
![-\cfrac{\stackrel{4}{~~\begin{matrix} 24 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}{5}\cdot -\cfrac{1}{\underset{1}{~~\begin{matrix} 6 \\[-0.7em]\cline{1-1}\\[-5pt]\end{matrix}~~}}\implies \boxed{\cfrac{4}{5}}](https://tex.z-dn.net/?f=-%5Ccfrac%7B%5Cstackrel%7B4%7D%7B~~%5Cbegin%7Bmatrix%7D%2024%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%7B5%7D%5Ccdot%20-%5Ccfrac%7B1%7D%7B%5Cunderset%7B1%7D%7B~~%5Cbegin%7Bmatrix%7D%206%20%5C%5C%5B-0.7em%5D%5Ccline%7B1-1%7D%5C%5C%5B-5pt%5D%5Cend%7Bmatrix%7D~~%7D%7D%5Cimplies%20%5Cboxed%7B%5Ccfrac%7B4%7D%7B5%7D%7D)
Answer:
Choice D is correct answer.
Step-by-step explanation:
We have given two function.
f(x) =2ˣ+5x and g(x) = 3x-5
We have to find the addition of given two function.
(f+g)(x) = ?
The formula to find the addition, we have
(f+g)(x) = f(x) + g(x)
Putting given values in above formula, we have
(f+g)(x) = (2ˣ+5x)+(3x-5)
(f+g)(x) = 2ˣ+5x+3x-5
Adding like terms, we have
(f+g)(x) = 2ˣ+8x-5 which is the answer.
5^2(2-sqrt3) is the answer here is the link to how to do it https://socratic.org/questions/suppose-an-isosceles-triangle-abc-has-a-30-and-b-c-5-what-is-the-leng...
Answer:
x^87
Step-by-step explanation:
Multiplying x^22 and x^7 results in x^29.
Then we have:
(x^29)^3 = x^87
Recall that (a^b)^c = a^(bc) and that a^b*a^c = a^(b + c)