Answer:
a. [ 0.454,0.51]
b. 599.472 ~ 600
Step-by-step explanation:
a)
Confidence Interval For Proportion
CI = p ± Z a/2 Sqrt(p*(1-p)/n)))
x = Mean
n = Sample Size
a = 1 - (Confidence Level/100)
Za/2 = Z-table value
CI = Confidence Interval
Mean(x)=410
Sample Size(n)=850
Sample proportion = x/n =0.482
Confidence Interval = [ 0.482 ±Z a/2 ( Sqrt ( 0.482*0.518) /850)]
= [ 0.482 - 1.645* Sqrt(0) , 0.482 + 1.65* Sqrt(0) ]
= [ 0.454,0.51]
b)
Compute Sample Size ( n ) = n=(Z/E)^2*p*(1-p)
Z a/2 at 0.05 is = 1.96
Samle Proportion = 0.482
ME = 0.04
n = ( 1.96 / 0.04 )^2 * 0.482*0.518
= 599.472 ~ 600
What is it? Is something wrong
Step-by-step explanation:
PLS MARK ME AS BRAIN LIST ANSWER
So since it is a negative 24 and 3x and 2y so first u do 2y+3x which is 5xy so -24= 5xy the input would be -24 output would be 5xy
No
there are multiple y values for 1 x(twice)