We know that Angle Bisector Divides an Angle into Two Equal Angles.
As UP is the Angle Bisector of Angle U, It Divides Angle U into two Equal Parts they are Angle(1) and Angle(2)
⇒ Angle(1) = Angle(2)
Given Angle(1) = 5x + 10 and Angle(2) = 3x + 14
⇒ 5x + 10 = 3x + 14
⇒ 2x = 4
⇒ x = 2
⇒ Angle(1) = 5x + 10 = 5(2) + 10 = 10 + 10 = 20
So : Measure of Angle(1) is 20
I believe the answer would be 36.
Hope this helped you. ;}
Answer:
Step-by-step explanation:
Let the integer be 6 for even and 7 for odd (say)
For 6, we divide by 2, now get 3. Now we multiply by 3 and add 1 to get 10. Now since 10 is even divide by 5, now multiply by 3 and add 1 to get 16. Now divide by 2 again by 2 again by 2 again by 2 till we get rid of even numbers.
The result is 1, so multiply by 3 and add 1 we get 4 now divide 2 times by 2 to get 1, thus this result now again repeats after 2 times.
Say if we select off number 3, multiply by 3 and add 1 to get 10 now divide by 5, now repeat the same process as above for 5 until we get 1 and it gets repeated every third time.
Thus whether odd or even after some processes, we get 1 and the process again and again returns to 1.
A. Factor the numerator as a difference of squares:

c. As

, the contribution of the terms of degree less than 2 becomes negligible, which means we can write

e. Let's first rewrite the root terms with rational exponents:
![\displaystyle\lim_{x\to1}\frac{\sqrt[3]x-x}{\sqrt x-x}=\lim_{x\to1}\frac{x^{1/3}-x}{x^{1/2}-x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Clim_%7Bx%5Cto1%7D%5Cfrac%7B%5Csqrt%5B3%5Dx-x%7D%7B%5Csqrt%20x-x%7D%3D%5Clim_%7Bx%5Cto1%7D%5Cfrac%7Bx%5E%7B1%2F3%7D-x%7D%7Bx%5E%7B1%2F2%7D-x%7D)
Next we rationalize the numerator and denominator. We do so by recalling


In particular,


so we have

For

and

, we can simplify the first term:

So our limit becomes