Hello :
<span>the recursive formula is : an +1 = q an ... q : common ratio</span>
Answer:
4033
Step-by-step explanation:
An easy way to solve this problem is to notice the numerator, 2017^4-2016^4 resembles the special product a^2 - b^2. In this case, 2017^4 is a^2 and 2016^4 is b^2. We can set up equations to solve for a and b:
a^2 = 2017^4
a = 2017^2
b^2 = 2016^4
b = 2016^2
Now, the special product a^2 - b^2 factors to (a + b)(a - b), so we can substitute that for the numerator:
<h3>
</h3>
We can notice that both the numerator and denominator contain 2017^2 + 2016^2, so we can divide by which is just one, and will simplify the fraction to just:
2017^2 - 2016^2
This again is just the special product a^2 - b^2, but in this case a is 2017 and b is 2016. Using this we can factor it:
(2017 + 2016)(2017 - 2016)
And, without using a calculator, this is easy to simplify:
(4033)(1)
4033
Equation for Line
y = -1/2 x - 2
Answer:
<h2>WOW!!What an amazing question</h2>
Answer:
b=15
How I got it:
32 + (7x4) = 32 + 28 = 60
60 divided by 4 = 15
Checking:
15 - 7 = 8
8 x 4 = 32
32 = 32
<em>You can tell b = 15 is the correct answer.</em>