so, let's keep in mind that

so let's make a quick table of those solutions, say A, B, C solutions with x,y,z liters of acid, with an acidity of 0.25, 0.40 and 0.60 respectively.

we know she's using "z" liters and those are 3 times as much as "y" liters, so z = 3y.
![\bf \begin{cases} x+y+3y=78\\ x+4y=78\\[-0.5em] \hrulefill\\ 0.25x+0.4y+0.6(3y)=35.1\\ 0.25x+0.4y=1.8y=35.1\\ 0.25x+2.2y=35.1 \end{cases}\implies \begin{cases} x+4y=78\\\\ 0.25x+2.2y=35.1 \end{cases} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ x+4y=78\implies \boxed{x}=78-4y \\\\\\ \stackrel{\textit{using substitution on the 2nd equation}}{0.25\left( \boxed{78-4y} \right)+2.2y=35.1}\implies 19.5-y+2.2y=35.1](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20x%2By%2B3y%3D78%5C%5C%20x%2B4y%3D78%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%200.25x%2B0.4y%2B0.6%283y%29%3D35.1%5C%5C%200.25x%2B0.4y%3D1.8y%3D35.1%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20x%2B4y%3D78%5C%5C%5C%5C%200.25x%2B2.2y%3D35.1%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20x%2B4y%3D78%5Cimplies%20%5Cboxed%7Bx%7D%3D78-4y%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20substitution%20on%20the%202nd%20equation%7D%7D%7B0.25%5Cleft%28%20%5Cboxed%7B78-4y%7D%20%5Cright%29%2B2.2y%3D35.1%7D%5Cimplies%2019.5-y%2B2.2y%3D35.1)
![\bf 1.2y=15.6\implies y=\cfrac{15.6}{1.2}\implies \blacktriangleright y=13 \blacktriangleleft \\\\\\ x=78-4y\implies x=78-4(13)\implies \blacktriangleright x=26 \blacktriangleleft \\\\\\ z=3y\implies z=3(13)\implies \blacktriangleright z=39 \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill \stackrel{25\%}{26}\qquad \stackrel{40\%}{13}\qquad \stackrel{60\%}{39}~\hfill](https://tex.z-dn.net/?f=%5Cbf%201.2y%3D15.6%5Cimplies%20y%3D%5Ccfrac%7B15.6%7D%7B1.2%7D%5Cimplies%20%5Cblacktriangleright%20y%3D13%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20x%3D78-4y%5Cimplies%20x%3D78-4%2813%29%5Cimplies%20%5Cblacktriangleright%20x%3D26%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20z%3D3y%5Cimplies%20z%3D3%2813%29%5Cimplies%20%5Cblacktriangleright%20z%3D39%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%5Cstackrel%7B25%5C%25%7D%7B26%7D%5Cqquad%20%5Cstackrel%7B40%5C%25%7D%7B13%7D%5Cqquad%20%5Cstackrel%7B60%5C%25%7D%7B39%7D~%5Chfill)
Step-by-step explanation:
J=(x+4)²
K=(8-x)
X=5
=J+3k
=(x+4)(x+4)+3(8-x)
=(x²+8x+16+24-3x)
=25+25+40
=90
Alternatively:
J=(5+4)²
J=81
K=8-5
K=3
J+3k
81+3(3)
81+9
90
Answer:
(1)Base Area= 81 square yards.
(2)
-
6 ft long and 8 ft wide
- 24 ft long and 2 ft wide
(3)Height=12 Units
Step-by-step explanation:
<u>Question 1</u>
Volume of the rectangular prism=2,592 cubic yards.
Height of the rectangular prism=32 yards
Volume of a rectangular prism =lbh (where lb is the Base Area)
Therefore:
lbh=2592
32lb=2592
lb=2592/32=81
Base Area= 81 square yards.
<u>Question 2</u>
Volume of the rectangular prism=432 cubic feet.
Height of the rectangular prism=9 feet
Volume of a rectangular prism =lbh (where lb is the Base Area)
Therefore:
lbh=432
9lb=432
lb=432/9=48
Base Area= 48 square yards.
Any dimension whose product is 48 is a possible choice.
They are:
- 3 ft long and 16 ft wide
-
6 ft long and 8 ft wide
- 24 ft long and 2 ft wide
<u>Question 3</u>
<u />
Volume of the rectangular prism=960 cubic units.
Base Area of the rectangular prism, lb=80 Square Units
Volume of a rectangular prism =lbh (where lb is the Base Area)
Therefore:
lbh=960
80h=960
h=960/80=12
Height= 12 units.
Percent of decrease :
Original - New / Original
so...
80 - 52 / 80 ---->
28/80
.35 multiply by 100 to get percent
35% increase Hope I helped if you have any questions let me know! :)
If you're asking for the number of digits smaller than 13 in the bag:12