Try to use Mathway if your having trouble solving your equations
Answer: There are 360360 ways to appoint the members of the cabinet.
Step-by-step explanation:
Since we have given that
Number of eligible candidates = 15
Number of spots available = 5
We need to find the number of different ways the members can be appointed where rank matters
For this we will use "Permutations":
So, the required number of different ways in choosing the members for appointment is given by

Hence, there are 360360 ways to appoint the members of the cabinet.
1/0.125
I really hope this helps
Answer: C & D
<u>Step-by-step explanation:</u>
A binomial experiment must satisfy ALL four of the following:
- A fixed number of trials
- Each trial is independent of the others
- There are only two outcomes (Success & Fail)
- The probability of each outcome remains constant from trial to trial.
A) When the spinner is spun three times, X is the sum of the numbers the spinner lands on.
→ #3 is not satisfied <em>(#4 is also not satisfied)</em>
B) When the spinner is spun multiple times ...
→ #1 is not satisfied
C) When the spinner is spun four times, X is the number of times the spinner does not land on an odd number.
→ Satisfies ALL FOUR
- A fixed number of trials = 4
- Each trial is independent of the others = each spin is separate
- There are only two outcomes = Not Odd & Odd
- The probability of each outcome remains constant from trial to trial = P(X = not odd) = 0.50 for each spin
D) When the spinner is spun five times, X is the number of times the spinner lands on 1.
→ Satisfies ALL FOUR
- A fixed number of trials = 5
- Each trial is independent of the others = each spin is separate
- There are only two outcomes = 1 & Not 1
- The probability of each outcome remains constant from trial to trial = P(X = 1) = 0.17 for each spin