Answer:
0.005 M
Explanation:
Given data:
volume of sample solution ( volume of D ) = 5.0 mL
volume of added stock solution ( V1 ) = 5.0 mL
concentration of added stock solution ( N1 ) = 0.02 M
Total volume of concentration ( V2 )= 10 mL = ( 5.0 mL + 5.0mL)
concentration of Total volume of sample ( C2 ) = 0.01
N2 = ( N1V1 ) / V2
= ( 0.02 * 5 ) / 10 = 0.01 m
absorbance of sample solution ( A1 ) = 0.10
absorbance of additional sample solution ( A2 ) = 0.20
attached below is the remaining part of the detailed solution
<span>Answer: at 0.01 °C and 0.0060 atm the three phases (solid, liquid and gas)
</span><span>
</span><span>
</span><span>Explanation:
</span><span>
</span><span>
</span><span>1) Water at 0.0060 atm and 0.01° C is at its triple point.
</span>
2) The triple point is the point in the phase diagram at which the three physical states coexist: gas, liquid and solid.
3) That means that water can freeze and boil at the same time. In fact they can happen any of the six changes of phase: freezing (liquid to solid), melting (solid to liquid), evaporation (liquid to gas), condensation (gas to liquid), sublimation (solid to gas), and deposition (gas to solid).
The phase diagram is unique for any substance, meaning that it is different for different substances: the normal boiling and melting points are different.
Answer:
Explanation:
The graph of an inversely proportional relationship displays a vertical asymptote at the y-axis as the y value increases without bound as x gets closer and closer to zero (but is positive) and decreases without bound as x gets closer and closer to zero (but is negative)and a horizontal asymptote at the x-axis as y gets .
Answer:
The answer to your question is 32.44 moles
Explanation:
Data
moles of Na₂CO₃ = ?
volume = 9.54 l
concentration = 3.4 M
Formula
Molarity = 
Solve for number of moles
number of moles = Molarity x volume
Substitution
Number of moles = (3.4)( 9.54)
Simplification
Number of moles = 32.44