1. y=4x
2. y=-7x-8
3. y=5x+63
4. y=¾x+8
5. y=-3x-½
6. y=1x-3
7. y=2
8. y=-2x+1
9. y=4x+7
wor<u>k for 9</u>
1=4(2)+b
1= 8 +b
-8 -8
7=b
10. y=0
11. y=¾x+6
<u>work </u><u>for </u><u>1</u><u>1</u>
<em>9</em><em> </em><em>=¾(4)+b</em>
<em>=¾(4)+b9</em><em> </em><em>= 3</em><em> </em><em> </em><em> </em><em>+b</em>
<em>+b-3=-3</em>
<em>+b-3=-3 6=</em><em>b</em>
<em>1</em><em>2</em><em>.</em><em> </em><em>sorry </em><em>I </em><em>haven't</em><em> </em><em>done </em><em>thai </em><em>one </em><em>in </em><em>a </em><em>while.</em>
<em>I </em><em>was </em><em>too </em><em>lazy </em><em>to </em><em>include</em><em> </em><em>the </em><em>work </em><em>for </em><em>the </em><em>first </em><em>couple</em><em> </em><em>of </em><em>answers</em><em> </em><em>although</em><em> </em><em>I </em><em>recommend</em><em>.</em><em> </em>
<em>M</em>
<em>A</em>
<em>T</em>
<em>H</em>
<em>W</em>
<em>A</em>
<em>Y</em>
<em>they </em><em>include</em><em> </em><em>work </em><em>with </em><em>ads</em>
The equation of the parabola in the vertex form is y = (x - 3
- 5 with ( 3, -5) is the vertex of the parabola and 1 is the multiplier
In the above question, A parabolic equation is given as follows:
Y = x^2 - 6x + 4
The equation of the parabola in the vertex form is :
y = a (x - h
+ k
Where a is a multiplier in the equation and (h,k) are the coordinates of the vertex
So, in order to obtain this form, we will use the method of completing square :
Y = x^2 - 6x + 4
y =
- 6x + (9 -9) + 4
y = (x - 3
+ ( -9 + 4)
y = (x - 3
- 5
where, ( 3, -5) is the vertex of the parabola and 1 is the multiplier
Hence, The equation of the parabola in the vertex form is y = (x - 3
- 5 with ( 3, -5) is the vertex of the parabola and 1 is the multiplier
To learn more about, parabola, here
brainly.com/question/21685473
#SPJ1
I don’t know what the answer is I wish I could help
6 is the anwser to ur question