Answer:
There is a 0.82% probability that a line width is greater than 0.62 micrometer.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by

After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X. The sum of the probabilities is decimal 1. So 1-pvalue is the probability that the value of the measure is larger than X.
In this problem
The line width used for semiconductor manufacturing is assumed to be normally distributed with a mean of 0.5 micrometer and a standard deviation of 0.05 micrometer, so
.
What is the probability that a line width is greater than 0.62 micrometer?
That is 
So



Z = 2.4 has a pvalue of 0.99180.
This means that P(X \leq 0.62) = 0.99180.
We also have that


There is a 0.82% probability that a line width is greater than 0.62 micrometer.
Answer:
61,940
Step-by-step explanation:
For a recursive sequence of reasonable length, it is convenient to use a suitable calculator for figuring the terms of it. Since each term not only depends on previous terms, but also depends on the term number, it works well to use a spreadsheet for doing the calculations. The formula is easily entered and replicated for as many terms as may be required.
__
The result of executing the given algorithm is shown in the attachment. (We have assumed that g_1 means g[-1], and that g_2 means g[-2]. These are the starting values required to compute g[0] when k=0.
That calculation looks like ...
g[0] = (0 -1)×g[-1] +g[-2} = (-1)(9) +5 = -4
The attachment shows the last term (for k=8) is 61,940.
Answer:
This function is an even-degree polynomial, so the ends go off in the same directions, just like every quadratic I've ever graphed. Since the leading coefficient of this even-degree polynomial is positive, the ends came in and left out the top of the picture, just like every positive quadratic you've ever graphed. All even-degree polynomials behave, on their ends, like quadratics.
Step-by-step explanation:
Answer:
C. You would be finding the total distance. You arent finding the rate because there is no division, and we dont know how long it took hime to ride the original 5. The answer is C.
Question: When is this due?