1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
3 years ago
5

An automobile manufacturer is concerned about a fault in the braking mechanism of a particular model. The fault can, on rare occ

asions, cause a catastrophe at high speed. The distribution of the number of cars per year that will experience the catastrophe is a random variable with variance = 5.
a) What is the probability that at most 3 cars per year will experience a catastrophe?
b) What is the probability that more than 1 car per year will experience a catastrophe?
Mathematics
1 answer:
elena55 [62]3 years ago
4 0

Answer:

(a) Probability that at most 3 cars per year will experience a catastrophe is 0.2650.

(b) Probability that more than 1 car per year will experience a catastrophe is 0.9596.

Step-by-step explanation:

We are given that the distribution of the number of cars per year that will experience the catastrophe is a Poisson random variable with variance = 5.

Let X = <em>the number of cars per year that will experience the catastrophe </em>

SO, X ~ Poisson(\lambda = 5)

The probability distribution for Poisson random variable is given by;

               P(X=x) = \frac{e^{-\lambda} \times \lambda^{x} }{x!} ; \text{ where} \text{ x} = 0,1,2,3,...

where, \lambda = Poisson parameter = 5  {because variance of Poisson distribution is \lambda only}

(a) Probability that at most 3 cars per year will experience a catastrophe is given by = P(X \leq 3)

    P(X \leq 3)  =  P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)

                   =  \frac{e^{-5} \times 5^{0} }{0!} +\frac{e^{-5} \times 5^{1} }{1!} +\frac{e^{-5} \times 5^{2} }{2!} +\frac{e^{-5} \times 5^{3} }{3!}

                   =  e^{-5}  +(e^{-5} \times 5) +\frac{e^{-5} \times 25 }{2} +\frac{e^{-5} \times 125}{6}      

                   =  <u>0.2650</u>

(b) Probability that more than 1 car per year will experience a catastrophe is given by = P(X > 1)

               P(X > 1)  =  1 - P(X \leq 1)

                             =  1 - P(X = 0) - P(X = 1)

                             =  1-\frac{e^{-5} \times 5^{0} }{0!} -\frac{e^{-5} \times 5^{1} }{1!}

                             =  1 - 0.00674 - 0.03369

                             =  <u>0.9596</u>

You might be interested in
Maria cannot remember what she scored on the second test, but she knows that the sum of the three tests is 270. Write and solve
kati45 [8]
88x+92=+270 solve the inequality
4 0
3 years ago
Which value of k makes 3- 3k -12 &gt; 9 true ?
Nadya [2.5K]

Answer:

k

Step-by-step explanation

k can be 11. If u plug 11: 3-21-12 is bigger than 9

3 0
3 years ago
Read 2 more answers
25-42 Differentiate the function.<br> 25. <img src="https://tex.z-dn.net/?f=f%28x%29%3Dx%5E%7B5%7D%2B5%5E%7Bx%7D" id="TexFormula
natulia [17]

Answer:

<u>y'= 5x^4 + 5^x In(5)</u>

Step-by-step explanation:

<u>Differentiate</u><u> </u><u>with </u><u>Respect</u><u> </u><u>to</u><u> </u><u>x</u>

<u>f(</u><u>x)</u><u>'</u><u>=</u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>In(</u><u>5</u><u>^</u><u>x</u><u>)</u>

<u>f(</u><u>x)</u><u>'</u><u>=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>x </u><u>In(</u><u>5</u><u>)</u>

<u>with </u><u>respect</u><u> </u><u>to </u><u>x,</u><u> </u><u>we </u><u>have</u>

<u>y'=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>y </u><u>In(</u><u>5</u><u>)</u>

<u>y'=</u><u> </u><u>5</u><u>x</u><u>^</u><u>4</u><u> </u><u>+</u><u> </u><u>5</u><u>^</u><u>x</u><u> </u><u>In(</u><u>5</u><u>)</u>

8 0
2 years ago
A college infirmary conducted an experiment to determine the degree of relief provided by three cough remedies. Each cough remed
KiRa [710]

Answer:

p_v = P(\chi^2_{4,0.05} >3.81)=0.43233

Since the p values is higher than the significance level we FAIL to reject the null hypothesis at 5% of significance, and we can conclude that we don't have significant differences between the 3 remedies analyzed. So we can say that the 3 remedies ar approximately equally effective.

Step-by-step explanation:

A chi-square goodness of fit test "determines if a sample data matches a population".

A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".

Assume the following dataset:

                               NyQuil          Robitussin       Triaminic     Total

No relief                    11                     13                      9               33

Some relief               32                   28                     27              87

Total relief                7                       9                      14               30

Total                         50                    50                    50              150

We need to conduct a chi square test in order to check the following hypothesis:

H0: There is no difference in the three remedies

H1: There is a difference in the three remedies

The level os significance assumed for this case is \alpha=0.05

The statistic to check the hypothesis is given by:

\sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}

The table given represent the observed values, we just need to calculate the expected values with the following formula E_i = \frac{total col * total row}{grand total}

And the calculations are given by:

E_{1} =\frac{50*33}{150}=11

E_{2} =\frac{50*33}{150}=11

E_{3} =\frac{50*33}{150}=11

E_{4} =\frac{50*87}{150}=29

E_{5} =\frac{50*87}{150}=29

E_{6} =\frac{50*87}{150}=29

E_{7} =\frac{50*30}{150}=10

E_{8} =\frac{50*30}{150}=10

E_{9} =\frac{50*30}{150}=10

And the expected values are given by:

                               NyQuil          Robitussin       Triaminic     Total

No relief                    11                     11                       11               33

Some relief               29                   29                     29              87

Total relief                10                     10                     10               30

Total                         50                    50                    50              150

And now we can calculate the statistic:

\chi^2 = \frac{(11-11)^2}{11}+\frac{(13-11)^2}{11}+\frac{(9-11)^2}{11}+\frac{(32-29)^2}{29}+\frac{(28-29)^2}{29}+\frac{(27-29)^2}{29}+\frac{(7-10)^2}{10}+\frac{(9-10)^2}{10}+\frac{(14-10)^2}{10} =3.81

Now we can calculate the degrees of freedom for the statistic given by:

df=(rows-1)(cols-1)=(3-1)(3-1)=4

And we can calculate the p value given by:

p_v = P(\chi^2_{4,0.05} >3.81)=0.43233

And we can find the p value using the following excel code:

"=1-CHISQ.DIST(3.81,4,TRUE)"

Since the p values is higher than the significance level we FAIL to reject the null hypothesis at 5% of significance, and we can conclude that we don't have significant differences between the 3 remedies analyzed.

4 0
3 years ago
4/6, 7/12, 5/10
Elden [556K]
In order from least to greatest: 
5/10 , 7/12 , 4/6 
You have to find a common denominator of all 3 numbers which is 60 and then you proceed with the next steps. 
7 0
3 years ago
Other questions:
  • the area of one circle is 9 times as great as the area of another. If the radius of smaller circle is 3, find the radius of larg
    12·1 answer
  • A student has two test scores. the difference between the scores is 44 and the​ mean, or​ average, of the scores is 8484. what a
    9·1 answer
  • Which are equivalent expressions? Check all that are true. 11a + 12b = 23ab
    7·1 answer
  • What proportions have a solution of x = -2
    10·1 answer
  • Will mark Brainliest if someone can help me!!!!! (Idk if Prinicipal is right 2-5)
    8·1 answer
  • mo's farm sold a total of 165 pounds of Apples and peaches. she sold Apple for $1.75 per pound and peaches for $2.50 per pound.
    7·2 answers
  • Compute the difference​ quotient, StartFraction f (x plus h )minus f (x )Over h EndFraction f(x+h)−f(x) h​, for the function f (
    11·1 answer
  • Find EF in parallelogram CDEF.
    11·1 answer
  • Convert to the given unit. 65 m = cm​
    12·1 answer
  • What is the relation between adjacent and congruent angles?.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!