The total number of yards is 360 yards
<h3>How to determine the number of yards?</h3>
The given parameters are:
Number of sheets = 8
Yard per sheet = 45 yards
The total number of yards is calculated as:
Total number of yards = Number of sheets * Yard per sheet
Substitute the known values in the above equation
Total number of yards = 8 * 45 yards
Evaluate the product
Total number of yards = 360 yards
Hence, the total number of yards is 360 yards
Read more about unit rates at:
brainly.com/question/19493296
#SPJ1
Answer:
43.6%
Step-by-step explanation:
500-282=218
218/500=0.436
0.436=43.6%
Answer: 3(10^5)
=3*10^5
=3*(10*10*10*10*10)
=300000
This is how you should do It, just when it is squared you should times the number like up here you times 10 times 10 5 times so if you see it you don't times it by 5 you do 10 times 10 times 10 times 10 times 10 like this
You should get it now
Have a good day
Yours,
Nathaniel
Step-by-step explanation:
If you're using the app, try seeing this answer through your browser: brainly.com/question/2822258_______________
• Function: f(x) = 3x + 12.
A. Finding the inverse of f.
The composition of f with its inverse results in the identity function:
(f o g)(x) = x
f[ g(x) ] = x
3 · g(x) + 12 = x
3 · g(x) = x – 12
x – 12
g(x) = ⸺⸺
3
x g(x) = ⸺ – 4 <——— this is the inverse of f.
3________
B. Verifying that the composition of f and g gives us the identity function:
•

![\mathsf{=f\big[g(x)\big]}\\\\\\ \mathsf{=3\cdot \left(\dfrac{x}{3}-4\right)+12}\\\\\\ \mathsf{=\diagup\hspace{-7}3\cdot \dfrac{x}{\diagup\hspace{-7}3}-3\cdot 4+12}\\\\\\ \mathsf{=x-12+12}\\\\ \mathsf{=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7B%3Df%5Cbig%5Bg%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D3%5Ccdot%20%5Cleft%28%5Cdfrac%7Bx%7D%7B3%7D-4%5Cright%29%2B12%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdiagup%5Chspace%7B-7%7D3%5Ccdot%20%5Cdfrac%7Bx%7D%7B%5Cdiagup%5Chspace%7B-7%7D3%7D-3%5Ccdot%204%2B12%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx-12%2B12%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
and also
•

![\mathsf{=g\big[f(x)\big]}\\\\\\ \mathsf{=\dfrac{f(x)}{3}-4}\\\\\\ \mathsf{=\dfrac{3x+12}{3}-4}\\\\\\ \mathsf{=\dfrac{\diagup\hspace{-7}3\cdot (x+4)}{\diagup\hspace{-7}3}-4}\\\\\\ \mathsf{=x+4-4}\\\\ \mathsf{=x\qquad\quad\checkmark}](https://tex.z-dn.net/?f=%5Cmathsf%7B%3Dg%5Cbig%5Bf%28x%29%5Cbig%5D%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D%5Cdfrac%7Bf%28x%29%7D%7B3%7D-4%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%3D%5Cdfrac%7B3x%2B12%7D%7B3%7D-4%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3D%5Cdfrac%7B%5Cdiagup%5Chspace%7B-7%7D3%5Ccdot%20%28x%2B4%29%7D%7B%5Cdiagup%5Chspace%7B-7%7D3%7D-4%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%2B4-4%7D%5C%5C%5C%5C%0A%5Cmathsf%7B%3Dx%5Cqquad%5Cquad%5Ccheckmark%7D)
________
C. Since f and g are inverse, then
f(g(– 2))
= (f o g)(– 2)
=
– 2 <span>✔
</span>
• Call h the compositon of f and g. So,
h(x) = (f o g)(x)
h(x) = x
As you can see above, there is no restriction for h. Therefore, the domain of h is R (all real numbers).
I hope this helps. =)