1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
4 years ago
14

Help please

Mathematics
1 answer:
zimovet [89]4 years ago
8 0

0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0+0 hope that helps

You might be interested in
What does the ordered pair (4, 120) represent in context of this problem?
Nady [450]
They represent the variables x and y, where x = 4 and y = 120.

can anyone solve this problem?
10y + 6w = 90 + 6(w/1)
4 0
3 years ago
Victor has 2 times as many trophies as dean . Together, victor and Dean have 27 trophies . How many trophies does victor have?
Citrus2011 [14]

Answer:

18

Step-by-step explanation:

9 + 18 = 27

9 x 2 = 18

8 0
3 years ago
Simplify (5^x+2-5^x)/5^x×4
murzikaleks [220]

Answer:

6

Step-by-step explanation:

The given expression is,

\frac{5^{x+2}-5^x }{5^x\times4}

Now, we know that,

a^{m+n} = a^m . a^n

Then,

5^{x+2}=5^x . 5^2

So,

\frac{5^{x+2}-5^x}{5^x\times4}=\frac{5^x.5^2-5^x}{5^x\times4}

Now, taking 5^{x} common from the numerator of the given expression, then

\frac{5^{x+2}-5^x}{5^x\times4}=\frac{5^x(5^2-1)}{5^x\times4}

\implies\frac{5^{x+2}-5^x }{5^x\times4}=\frac{5^2-1}{4}

\implies\frac{5^{x+2}-5^x}{5^x\times4}=\frac{5\times5-1}{4}=\frac{25-1}{4}

\implies\frac{5^{x+2}-5^x}{5^x\times4}=\frac{24}{4}=6

So, the simplified form of the given expression gives the result 6.

8 0
4 years ago
(Number 4)help...plzz
Nimfa-mama [501]
Second answe is the correct answer

5 0
4 years ago
The points (6, -23) a
ZanzabumX [31]

Answer:

r=-3

Step-by-step explanation:

The line that passes through the two points (6, -23) and (11, r) has a slope of 4.

We want to determine the missing value of r.

We can use the slope formula:

\displaystyle m=\frac{y_2-y_1}{x_2-x_1}

Let (6, -23) be (x₁, y₁) and let (11, r) be (x₂, y₂). The final answer should be 4. Therefore:

\displaystyle \frac{r-(-23)}{11-6}=4

Simplify and evaluate:

\displaystyle \frac{r+23}{5}=4

Multiply both sides by 5:

r+23=20

Therefore:

r=-3

4 0
3 years ago
Other questions:
  • The lengths of the sides of a triangle are 3, 3, 3 square root of 2. Can the triangle be a right triangle?
    14·1 answer
  • Cost of car is multiplied by 0.02 the result is $1720. What's the cost of the car
    15·1 answer
  • Which two values are equivalent to 73 x 7-6?
    7·1 answer
  • MATHShare and show1. use base-ten blocks to find 182base-ten blocks to divide.1214 Describe the steps you took to find your answ
    9·1 answer
  • Point P is on line segment OQ. Given OQ = 2x, OP = x, and PQ = 10,
    11·2 answers
  • 1 point
    5·1 answer
  • Find the solution to the system: x=2y-7 and 4x+y=71
    7·1 answer
  • How many integers between -9 and -10
    7·1 answer
  • Scale factors and it so hard i dont no what to do
    10·1 answer
  • 6+\sqrt{6-15x}=15 Solve the radical
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!