1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scorpion4ik [409]
3 years ago
6

Find m (-3x + 20) (-2x + 55)

Mathematics
1 answer:
Sergeeva-Olga [200]3 years ago
6 0

Answer: Solution for (-3x+20)+(-2x+55)=180 equation: x= -21

Step-by-step explanation:

Simplifying

(-3x + 20) + (-2x + 55) = 180

Reorder the terms:

(20 + -3x) + (-2x + 55) = 180

Remove parenthesis around (20 + -3x)

20 + -3x + (-2x + 55) = 180

Reorder the terms:

20 + -3x + (55 + -2x) = 180

Remove parenthesis around (55 + -2x)

20 + -3x + 55 + -2x = 180

Reorder the terms:

20 + 55 + -3x + -2x = 180

Combine like terms: 20 + 55 = 75

75 + -3x + -2x = 180

Combine like terms: -3x + -2x = -5x

75 + -5x = 180

Solving

75 + -5x = 180

Solving for variable 'x'.

Move all terms containing x to the left, all other terms to the right.

Add '-75' to each side of the equation.

75 + -75 + -5x = 180 + -75

Combine like terms: 75 + -75 = 0

0 + -5x = 180 + -75

-5x = 180 + -75

Combine like terms: 180 + -75 = 105

-5x = 105

Divide each side by '-5'.

x = -21

Simplifying

x = -21

You might be interested in
(-6,0) ; slope = 2/3
marusya05 [52]

Answer:Slope Intercept

Y=2/3m-6

4 0
3 years ago
Read 2 more answers
Joey is running an experiment with a mass on a spring. Joey models the height of the mass above the table he is working on using
galben [10]

Answer: 1.8 s

Step-by-step explanation:

Given

The height of the spring mass system above the table is given by

h(t)=6.85\cos (3.42t)+9

The mass is performing S.H.M with frequency \omega =3.42

and \omega T=2\pi

\therefore T=\dfrac{2\pi }{\omega}

time when mass returns to its original position

T=\dfrac{2\pi }{3.42}\\\\T=1.8\ s

5 0
3 years ago
What is 10% of the number 50?
madam [21]

5.

To find this, you can do the is over of technique.

The is over of technique is as says - is over of and percent over one hundred.

If you use this technique, your equation should look like this:

x/50 = 10/100

Cross multiply 10 and 50 and divide by 100 to get the answer of 5.

Hope this helps!

7 0
3 years ago
Read 2 more answers
The table shows the pricing for four different brands of cat food.
Sauron [17]
The answer to this question is D ( $0.18 ) per ounce:-)
6 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
4 years ago
Read 2 more answers
Other questions:
  • {35 POINTS)What are the solutions of 2a^3-3a^2=8a-12 ?
    11·1 answer
  • You are given the list of​ numbers, <br> . Which numbers are​ rational? Irrational?
    6·1 answer
  • 50 POINTS PLEASE HELP!!!!!!!! Which expression can be simplified to find the quotient of 5375 / 25? ( / = division )
    11·2 answers
  • A radiator contains 8 quarts of fluid, 40% of which is antifreeze. How much fluid should be drained and replaced with pure antif
    7·1 answer
  • In the diagram of circle o, what is the measure of ABC
    5·1 answer
  • My favorite songdress
    10·1 answer
  • Write the fraction in simplest form<br>5/5
    13·2 answers
  • 7. The West Warriors scored 25 points. This was 12 points less than the Flinn Falcons.
    13·1 answer
  • PLEASE HELP .!!! ILL GIVE BRAINLIEST.. *EXRTA POINTS* .. DONT SKIP :(( ! <br> ILL GIVE 40 POINTS .
    7·2 answers
  • Plssss help meee I need help
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!