The following list gives the number of siblings for each of 11 students. 0, 8, 9, 6, 5, 7, 2, 4, 3, 1, 11 Find the modes of this
Y_Kistochka [10]
Answer:

Step-by-step explanation:
Given

Required
Determine the mode
Though, not necessary; it is a good practice to order the given data either in ascending or descending order.
In ascending order, the ordered data are:

Mode implies that: the data that has the highest number of occurrence.
In the given data, each data has a frequency of 1.
Hence, the mode is:

Remember that the general formula for a circle is <span>
(x – h)</span>² + (y – k)² = r²<span>, where (h,k) is the coordinate of the center.
We already know that (h,k) = (5,-4), since we know the center's coordinates. We need to find r, the radius, using the distance between the center and the point (-3,2).
To do this, we can either use the distance formula, or plug in the points in our circle equation and solve for r.
Let's do the second one, plugging in and solving for r.
We can use the point (-3,2) for (x,y):
</span>(x – h)² + (y – k)² = r²
(-3 - 5)² + (2 - -4)² = r²
(-8)² +(6)² = r²
64 + 36 = r²
100 = r²
r = 10
We know that r=10, and that r² = 100
Using h, k, and r, we can now solve for the equation of the circle in standard form.
The equation of the circle is:
(x – 5)² + (y + 4)² = 100
4. I think 4 is 128
16x16=256 and divide that by 2 and its 128
Answer:
Grantor more people might show up
Step-by-step explanation:
Answer:
1. B) 5.7
2. A) 12
3. A) 11.4
4. A) 5.7
5. A) 16.2
6. A) 11.2
7. No, they do not form a right triangle
8. Yes, they do form a right triangle
Step-by-step explanation:
Extra tip: The hypotenuse has to be less than both sides added together, but cannot be more than either of the sides alone.
1.
16² + b² = 17²
256 + b² = 289
256 - 256 + b² = 289 - 256
b² = 33
√b² = √33
b = 5.74 or 5.7
2.
16² + b² = 20²
256 + b² = 400
256 - 256 + b² = 400 - 256
b² = 144
√b² = √144
b = 12
3.
7² + 9² = c²
49 + 81 = c²
130 = c²
√130 = √c²
11.40 or 11.4 = c
4.
7² + b² = 9²
49 + b² = 81
49 - 49 + b² = 81 - 49
b² = 32
√b² = √32
b = 5.65 or 5.7
5.
a² + 5² = 17²
a² + 25 = 289
a² + 25 - 25 = 289 - 25
a² = 264
√a² = √264
a = 16.24 or 16.2
6.
10² + b² = 15²
100 + b² = 225
100 - 100 + b² = 225 - 100
b² = 125
√b² = √125
b = 11.18 or 11.2
7.
15² + 8² = 16²
225 + 64 = 256
289 ≠ 256
8.
5² + 12² = 13²
25 + 144 = 169
169 = 169