It's the <span>chloroplast.
Hope this helps !
Photon</span>
Answer:
Earth can be divided into three main layers: the core, the mantle and the crust. Each of these layers can be further divided into two parts: the inner and outer core, the upper and lower mantle and the continental and oceanic crust. Both the inner and outer core are made up of mostly iron and a little bit of nickel.
Explanation:
Answer:
This question lacks options, options are:
A) ATP
B) NADP
C) Pryuvate
D) glucose
E) acetyl-CoA.
The correct answer is C) Pyruvate.
Explanation:
Pyruvate is a very important compound for the cell since it is a key substrate for energy production and glucose synthesis (neo-glycogenesis), that is, pyruvate is the end product of glucose breakdown in glycolysis. Before entering the mitochondria, it can be converted to lactate, through an anaerobic reaction (in the absence or under oxygen supply) of low performance in energy production, when the main pathway is interfered with. It can also be converted to the amino acid alanine. Within the mitochondria, it can be transformed, by pyruvate dehydrogenase (PDH), into acetyl-coenzyme A (acetyl-CoA), the entry point (substrate) of the Krebs cycle. In addition, by means of pyruvate carboxylase, it can be transformed into oxalacetate, which constitutes the first step in neoglycogenesis.
Answer:
a. resolve the branching patterns (evolutionary history) of the Lophotrochozoa
b. (the same, it is repeated)
Explanation:
Nemertios (ribbon worms) and foronids (horseshoe worms) are closely related groups of lofotrocozoa. Lofotrocozoans, or simply trocozoans (= tribomastic celomados with trocophoric larva) are a group of animals that includes annelids, molluscs, endoprocts, brachiopods and other invertebrates. They represent a crucial superphylum for our understanding of the evolution of bilateral symmetry animals. However, given the inconsistency between molecular and morphological data for these groups, their origins were not entirely clear. In the work linked above, the first records of genomes of the Nemertine worm Notospermus geniculatus and the foronid Phoronis australis are presented, along with transcriptomes along the adult bodies. Our phylogenetic analyzes based on the genome place Nemertinos as the sister group of the taxon that contains Phoronidea and Brachiopoda. It is shown that lofotrocozoans share many families of genes with deuterotomes, suggesting that these two groups retain a common genetic repertoire of bilaterals that do not possess ecdisozoans (arthropods, nematodes) or platizoos (platelets, sydermats). Comparative transcriptomics demonstrates that foronid and brachiopod lofophores are similar not only morphologically, but also at the molecular level. Although the lofophore and vertebrates show very different cephalic structures, the lofophorees express the vertebrate head genes and neuronal marker genes. This finding suggests a common origin of the bilaterial pattern of the head, although different types of head will evolve independently in each lineage. In addition, we recorded innate immunity expansions of lineage-specific and toxin-related genes in both lofotrocozoa and deuterostomes. Together, this study reveals a dual nature of lofotrocozoans, in which the conserved and specific characteristics of the lineage shape their evolution.
Al crossmultiplies with 2
S crossmultiplies with 3
Al2S3