Answer:
D
Step-by-step explanation:
The value of K for which f(x) is a valid probability density function is 1/4.
<h3>How to solve for the value of K</h3>


![K[\frac{2^2}{2} -0]+[K[4(4-2)-(\frac{4^2}{2} -\frac{2^2}{2} )]=1](https://tex.z-dn.net/?f=K%5B%5Cfrac%7B2%5E2%7D%7B2%7D%20-0%5D%2B%5BK%5B4%284-2%29-%28%5Cfrac%7B4%5E2%7D%7B2%7D%20-%5Cfrac%7B2%5E2%7D%7B2%7D%20%29%5D%3D1)
open the equation
![K\frac{4}{2}+K[8 - (\frac{16}{2} -\frac{4}{2} )] = 1\\](https://tex.z-dn.net/?f=K%5Cfrac%7B4%7D%7B2%7D%2BK%5B8%20-%20%28%5Cfrac%7B16%7D%7B2%7D%20%20-%5Cfrac%7B4%7D%7B2%7D%20%29%5D%20%3D%201%5C%5C)
![2K+K[\frac{4}{2} ]=1](https://tex.z-dn.net/?f=2K%2BK%5B%5Cfrac%7B4%7D%7B2%7D%20%5D%3D1)
2K + 2K = 1
4K = 1
divide through by 4
K = 1/4
Read more on probability density function here
brainly.com/question/15714810
#SPJ4
Your answer is 250,000. There are two ways to do this problem.
1) Solve 500/4 to find out how many sheets of paper you get per every dollar. — Your answer is 125 sheets for $1. Then you multiply that answer by 2000, and get 250,000. Which means you get 250,000 sheets of paper for $2000.
2) You can divide 2000 by 4 & that gets you 500, you can then multiply that by 500 & you will get 250,000.
Hope this helps.
I like the cat on your pfp LOL sorry i couldn’t help tho